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Abstract 10 

The rapid development of traditional agriculture in China was achieved at the expense of high 11 

energy consumption and investments. However, the global green development trend made it necessary 12 

for the country to transform its agricultural energy utilization. Energy efficiency changes are affected 13 

by many factors, particularly industrial agglomeration. In recent years, the Chinese government has 14 

introduced a series of policies, including setting major producing regions for grains and advantageous 15 

regions for characteristic agricultural product. These have caused significant changes to the spatial 16 

layout of the agriculture industry. However, there is still a lack of research on the impact of these 17 

changes on agricultural energy efficiency (AEE). In this study, panel data of 30 Chinese provinces 18 

from 2000 to 2016 were entered into stochastic frontier models to measure the country’s AEE at the 19 

provincial level. A series of spatial econometric models were also used to analyze the impact of 20 

agricultural industrial agglomeration on China’s AEE. The results indicate that the country’s AEE 21 

exhibited obvious spatial gradients and correlations. After controlling the impacts of spatial 22 

correlation and other factors in the models, agricultural industrial agglomeration was found to have an 23 

overall positive impact on China’s AEE. In the future, policies should be formulated to increase AEE 24 

by establishing agricultural functional areas, strengthening the innovation and sharing of green 25 

development technologies at the farm level, and promoting the optimization of energy structures in 26 

agricultural and rural areas. 27 

Keywords: Industrial agglomeration, energy efficiency, spatial econometrics, agriculture in China  28 
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In recent years, energy shortages have limited socio-economic developments, and the adverse 31 

effects of energy consumption on the ecological environment are increasingly significant (Cherni and 32 

Jouini, 2017; Jiang and Lin, 2013). There is an extremely urgent need to improve energy efficiency to 33 

achieve the sustainable development goals (SDGs). Studies have found that the global environment 34 

and climate conditions are significantly affected by the energy consumption of agricultural activities 35 

(including fuel and electricity). The industry’s contribution to the global emission of greenhouse gases 36 

ranges from 25% to 35% (David and Michael, 2014). Agricultural energy utilization is generally less 37 

efficient in comparison to that of the industrial sector (Wang et al., 2013). Thus, it is critical to reduce 38 

agricultural energy consumption and carbon emissions by improving AEE. Doing so will promote not 39 

only sustainable agricultural development (Alluvione et al., 2011; Rafiee et al., 2010) but also reduce 40 

agricultural production costs, increase agricultural competitiveness and profitability, and effectively 41 

alleviate poverty (De Janvry and Sadoulet, 2013; Omid et al., 2011). 42 

Recently, there has been an increasing amount of research on the factors affecting energy 43 

efficiency. These factors include technological progress, management and infrastructural levels, 44 

energy prices, and systems and policies. Studies have shown that technological advances drive energy 45 

efficiency, and that the energy efficiency improvements arising from changes in technological factors 46 

are significant in most sectors (Makridou et al., 2016). The empirical analysis of China’s textile 47 

industry by Lin and Zhao (2016) revealed that technology gaps caused regional energy efficiency 48 

differences in the industry. Energy prices also affect energy efficiency (Herrerias et al., 2013), though 49 

the related results differ across studies. For instance, the research findings were negative for the 50 

United States and European Union (EU) countries (Ball et al., 2015; Makridou et al., 2016) but were 51 

positive for China’s transportation industry (Liu and Lin, 2018). 52 

Furthermore, other studies ascertained that industrial energy efficiency is positively correlated 53 

with the level of regional economic development and the general provision of basic infrastructure 54 

(Cheng, 2016; Li et al., 2018; Vlontzos et al., 2014; Zheng and Lin, 2018). Vlontzos et al. (2014) 55 

conducted a representative study on the impact of policies by estimating the AEEs of EU member 56 

states. They found that the implementation of the Common Agricultural Policy (CAP) had a 57 

significant positive impact on energy and environmental efficiencies. For specific individual 58 
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producers, the major obstacles to energy efficiency improvements were the scale of operation, 59 

management level, and return on assets (Haider et al., 2019; Moon and Min, 2017; Qin et al., 2017). 60 

Industrial agglomeration generally refers to the proximity of related activities in the same 61 

industry at a specific geographical space (Billings and Johnson, 2016); it is a common phenomenon in 62 

industrial development. Studies have found that industrial agglomeration can have either positive or 63 

negative impacts on industrial development, thereby validating the Williamson hypothesis. The 64 

impact of industrial agglomeration on energy efficiency has recently received an increase in attention 65 

(Tanaka and Managi, 2017). Some studies suggested that the industrial agglomeration improve the 66 

scalar and distributional efficiencies of energy, leading to positive impacts on energy efficiency 67 

(Chang and Oxley, 2008; Liu et al., 2017). Nevertheless, some scholars believed that such effects 68 

could only be achieved after agglomeration had reached a certain level (Zheng and Lin, 2018). Other 69 

studies, however, highlighted that excessive agglomeration might lead to various problems, such as 70 

rising prices of production factors and overcapacity, which could lead to negative effects. This result 71 

means that there might be a non-linear and inverted U-shape relationship between industrial 72 

agglomeration and production efficiency (Brülhart and Mathys, 2008; Rizov et al., 2012). 73 

Although China has less than 10% of the world’s total arable lands, it has to provide food for 74 

more than 20% of the global population. This situation has led the agricultural industry to adopt the 75 

approach of high outputs accompanied by high energy consumption in recent decades (Chen et al., 76 

2009). A sharp increase in energy consumption simultaneously accompanied rapid agricultural 77 

development. Between the 2000-2016 period, consumption increased from 42.33 million to 85.44 78 

million tons of standard coal equivalent. This event represented an overall increase of 101.84%, or an 79 

average of 4.49% per annum, which was higher than the growth rate of the agricultural output value 80 

over the same period (4.10%). Some studies predicted that China’s agricultural energy consumption 81 

would reach 161.61 million tons of standard coal equivalent by 2025 (Fei and Lin, 2017), which is 82 

almost double the amount in 2016. 83 

Agricultural development in the country faces the double constraints of resources and environment, 84 

and its relationship with energy efficiency has gradually received more research attention. A 85 

representative study by Zhang et al. (2019) analyzed the AEE and consumption issues of China’s 86 

major producing regions for grains. They highlighted the significant and negative impact that 87 
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agricultural energy consumption had on agricultural carbon emissions. Fei and Lin (2016) used the 88 

data envelopment analysis (DEA) method to measure the AEE of China’s agricultural sector based on 89 

East, Central, and West China. The findings indicate that the agricultural output and mechanical 90 

energy had positive impacts on energy consumption, whereas the agricultural industrial structure, 91 

financial expenditures, and energy prices had negative impacts. Fei and Lin (2017) found that China’s 92 

agricultural sector still has great potential in regard to saving energy. The Chinese government 93 

introduced a series of policies over the past several decades, including the setting up of major 94 

producing regions for grains and advantageous regions for characteristic agricultural product. These 95 

policies have brought about significant changes to the geographical distribution of the agriculture 96 

industry (Wang et al., 2018). However, research on the impact of such changes on AEE is still 97 

lacking.  98 

In summary, although the impact of industrial agglomeration on AEE has been verified in many 99 

countries and industries, research in the field of China’s AEE based on the perspective of agricultural 100 

industrial agglomeration is lacking. In addition, the mechanism by which agricultural industrial 101 

agglomeration affects AEE has not been identified. Moreover, although existing studies have adopted 102 

the DEA measurement method, the more effective parameter frontier model has yet to be applied. 103 

Consequently, the results of the existing studies contain inevitable estimation errors. 104 

This study evaluated AEE at the provincial level using stochastic frontier models and analyzed 105 

the impact of agricultural industrial agglomeration using spatial econometric models. First, the study 106 

aimed to identify the regional differences in China’s agricultural energy consumption. Second, the 107 

study clarified the impact of agricultural industrial agglomeration on energy efficiency and the 108 

mechanism by which the former exerts its effects. The findings will be significant in promoting the 109 

development of green agriculture, energy conservation, and emissions reduction in China. 110 

The rest of the study is organized as follows. Section 2 introduces the data and models. Section 3 111 

presents the empirical results. Section 4 discusses the implications of the results. Section 5 112 

summarizes the research findings and proposes policy recommendations. 113 

2. Data and methodology 114 

2.1 AEE estimation 115 
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There are two main methods to measure AEE: The single-factor indicator and the total-factor 116 

AEE indicator. The former generally uses energy consumption per unit GDP as an inverse indicator 117 

but is unable to reflect the technical efficiency of energy use (Wilson et al., 1994). The latter is 118 

represented by the DEA and stochastic frontier analysis (SFA), both of which are based on the 119 

definition of the efficiency frontier. DEA, a non-parametric method with no predetermined frontier 120 

function, is widely used in research (Fei and Lin, 2016; Heidari et al., 2012; Mousavi-Avval et al., 121 

2011). However, DEA-generated results are very sensitive to the selection of input and output 122 

variables; they are also easily affected by the sample size and data quality (Cook et al., 2014). In 123 

contrast, SFA is a parametric estimation method based on maximum likelihood estimation (MLE). 124 

The stochastic frontier model is easier to interpret than the non-parametric method. The reliability of 125 

the results can also be estimated, thereby improving comparability (Greene, 2008). This method has 126 

developed rapidly and has been widely applied in recent years (Boyd and Lee, 2019; Marin and Palma, 127 

2017; Perroni et al., 2016). 128 

This study employed stochastic frontier panel models for its estimations to obtain more results. 129 

This model was introduced by (Aigner et al., 1977) and its basic form is as follows: 130 

 ��� = �(��� , 	)���exp (���) (1) 131 

where ��� is the production of the ith region at time t, �(���, 	)is the production function, ��� 132 

represents the inputs of production, ��� is the level of a degree of efficiency of the ith region at time t, 133 

��� must be in the interval (0,1), and ��� is the idiosyncratic error ��� ∼ �(0, ��). 134 

We further assumed that the production function is a Cobb-Douglas function, such that Equation 135 

(1) can be transformed into the following Equation (2): 136 

 ��(���) = �� + ∑ ��
�
��� �� !���" + ��� − $�� (2) 137 

Where $�� = − ��(���) ≥ 0. Two different models were derived from the specific settings of the 
itu 138 

form: The time-variant and the time-invariant model. 139 

As the temporal dimension of this study was longer than ten years, it was not realistic to assume 140 

that technical efficiencies remained unchanged over time. Thus, we used the Time-variant stochastic 141 

frontier production function models to predict efficiency. The time-variant model was in the form of 142 
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an inefficiency effects model proposed by Battese and Coelli (1995). Lastly, MLE was used for 143 

estimating Equation (2). 144 

This study employs labor (L), capital (K), energy consumption (E), and cultivated area (A) as 145 

input factors and the total value of agricultural output (Y) as the output variable to construct a 146 

stochastic frontier model of the panel data. There was a high probability of technological changes 147 

since the study spanned the 2000–2016 period. As such, an annual dummy variable t was added in 148 

Equation (3): 149 

�� &�� = '� + '� �� (�� + ') �� *�� + '+ �� ,�� + '- �� .�� + / + ��� − $��    (3) 150 

where i represents the ith province and t denotes time t; Y is the value-added to the GDP by the 151 

primary industry, which was converted to a constant price with 2000 as the base year; L is the number 152 

of people employed in the primary industry; A is the agricultural crop acreage; and E is the energy 153 

consumption of the primary industry, which could not be directly obtained from the existing statistics. 154 

Instead, the physical quantities of raw coal, electricity, natural gas, gasoline, and diesel consumed by 155 

the forestry, animal husbandry, and fishery industries of the various provinces were converted to 156 

standard coal equivalent to represent the energy consumption. Please refer to the annual China Energy 157 

Statistical Yearbook for the specific conversion factors, where vit is random disturbance term, uit is 158 

technical inefficiency studied above, and K is capital stock. 159 

In this study, the agricultural capital stock was measured using the perpetual inventory method 160 

(Goldsmith, 1951). The specific equation for this is Equation 4, which is as follows: 161 

*�� = *��0�(1 − 2��) + 3it         (4) 162 

where K is the capital stock agricultural base year (2000), which referenced the research findings of 163 

Zong and Liao (2014), and I is the annual fixed assets investments. Generally, the ideal data would be 164 

the total fixed capital formation of the primary industry. Thus, considering the problem with data 165 

acquisition, this study used the fixed assets investments by the agricultural, forestry, animal husbandry, 166 

and fishery industries as the substitute. During the calculation process, it was necessary to first 167 

construct a price index for the annual fixed assets investments. Next, the index sequence was used to 168 

deflate the annual investments of several years before the amounts were converted to actual values 169 

expressed in the constant price of the base year; δ is the economic depreciation rate. The value of 9.6% 170 

was adopted (Zhang et al., 2004). 171 
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2.2 Independent and control variables 172 

The independent variable of the study was the industrial agglomeration index (IAI). The control 173 

variables included the industrial economic level (lnGDP), basic infrastructure (INF), energy 174 

consumption structure (ENS), energy price (ENP), R&D expenditure (RND), and agricultural 175 

expenditure (AE). Table 1 displays the descriptive statistics of our data. 176 

i. IAI:  Position entropy was used to measure the level of agricultural industrial agglomeration, 177 

which is also known as the regional specialization index. It is an effective indicator for measuring 178 

the level of agricultural industrial agglomeration as in Equation (5) (Otsuka et al., 2014). 179 

3.3�� =

678
∑ 678

9:
7

∑ 678
9
8

∑ ∑ 678
9
8

9:
7

        (5)

 

180 

Where

3.3��

 represents the position entropy of the j industry in the i province, and 

;��

 represents the 

181 

output value of the j industry in the ith province (i=1,2.3... 30). j = 1,2,3, representing the first, second 

182 

and third industries. This study only calculated the position entropy of the first industry in each 

183 

province. The higher the position entropy is, the higher the degree of agglomeration is. 

184 

ii. lnGDP: Developed regions usually receive more financial support, which is accompanied by 185 

technological innovation, infrastructure, and other improvements. Higher levels of economic 186 

development generally have a positive impact on energy efficiency (Sadorsky, 2013). In this 187 

study, the level of economic development was represented by agricultural GDP in logarithmic 188 

form. A deflator was used to convert it to an index for a fixed base period. 189 

iii. INF:  Improvements to the basic infrastructure reduce transportation energy consumption and 190 

increase the efficiency of energy flow, thereby directly increasing AEE. This study used the road 191 

mileage per unit area in the various provinces to measure the regional infrastructure levels. 192 

iv. ENS: Different types of energy have varying efficiencies. For example, the efficiency of diesel 193 

and coal are relatively low compared with other energy products (Lin and Zhu, 2017). The 194 
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regional ENS also affects AEE. This study used the proportion of agricultural coal energy 195 

consumption of the various provinces to represent the regional ENS. 196 

v. ENP: Fuel price changes have a significant impact on energy input costs. As a result, producers 197 

and operators pay more attention to energy conservation. Therefore, it is believed that a rise in 198 

energy prices helps improve energy efficiency (Bye et al., 2018). This study used the purchasing 199 

price index of raw materials, fuel, and power (PPIRM) of the various provinces to represent ENP. 200 

vi. RND: High levels of scientific and technological knowledge can contribute to the heightening of 201 

energy-saving awareness, technological innovations, popularization, and application, which are 202 

the key factors to improving energy efficiency. The expenditure on scientific and technological 203 

knowledge was represented in this study by the share of research and development expenditure in 204 

the total regional fiscal expenditures. 205 

vii. AE:  It is generally believed that, on the one hand, the government’s agricultural investments 206 

represent the government's intervention in the economy, which distorts resource allocation and 207 

therefore has an adverse impact on the long-term development of agriculture. On the other hand, 208 

these investments also improve the infrastructure and basic conditions of agriculture, forestry, 209 

and water, and increase the promotion of technology. Either way, AEE is affected. In this study, 210 

AE is represented by the share of agricultural expenditures in the total regional fiscal 211 

expenditures. 212 

Table 1 Descriptive statistics of key variables 213 

Variable Name 
O

bs 
Mean S.D. Min Median Max 

AEE 
51

0 
0.73 0.118 0.37 0.76 0.92 

IAI 
51

0 
1.17 0.58 0.05 1.21 3.10 

LnGDP 
51

0 
9.66 0.67 7.94 9.69 11.12 

INF 
51

0 
0.69 0.46 0.02 0.59 2.11 

ENS 
51

0 
0.28 0.24 0.00 0.20 0.95 

ENP 
51

0 
5.21 0.36 4.59 5.24 6.41 

RND 
51

0 
0.02 0.01 0.00 0.01 0.07 

AE 
51

0 
0.09 0.04 0.01 0.09 0.19 
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 214 

2.3 Data source 215 

The research subjects of this study were China’s 30 provinces and cities (Tibet was excluded due 216 

to incomplete data) during the 2000–2016 period. For each province, the statistical yearbooks of 217 

China and the various provinces for the corresponding years were used to acquire the raw data of the 218 

following: the GDP and deflator index, agricultural population, fixed assets investments in agriculture, 219 

forestry, animal husbandry, and fishery, highway mileage, regional land area, fiscal expenditure, 220 

population engaged in the agricultural industry, and number of high school graduates. The PPIRMs 221 

were obtained from the various provincial statistical yearbooks. The physical consumption of raw coal, 222 

electricity, natural gas, gasoline, and diesel and the conversion coefficients for standard coal 223 

equivalent were obtained from the relevant China Energy Statistical Yearbooks and provincial statistical 224 

yearbooks. 225 

2.4 Empirical models 226 

2.4.1 Spatial autocorrelation test 227 

We first used the Moran’s I test method to verify the existence of spatial dependence in energy 228 

efficiency among the provinces. The Moran’s I test that we used was as follows (Equation [6]): 229 

3 =
< ∑ ∑ =78

>
8?@

>
7?@  ABB70ABB" ABB80ABB"

∑  ABB70ABB"
C>

7?@ ∑ ∑ =78
>
8?@

>
7?@

        (6) 230 

A significant Moran’s I index means that a global spatial correlation exists. Moran’s Scatter Plots 231 

(MSP) and the Local Indication of Spatial Association (LISA) are then utilized to test the local spatial 232 

correlation of the provincial agricultural energy efficiency in China. 233 

2.4.2 Spatial econometric models 234 

The majority of existing studies used the dynamic panel or Tobit model for their regression 235 

analyses to explore the factors affecting AEE. These methods ignore that, in reality, a geospatial AEE 236 

spillover effect exists (Pan et al., 2015). Studies have shown that there were obvious spatial spillover 237 

effects in energy consumption and that the regional differentiation of factors was obvious. Studies that 238 

ignore the spatial factors may produce estimation errors (Camioto et al., 2016; Liu et al., 2017). The 239 

Belgian economist Jean Paelinck proposed the spatial econometric model in the late 1970s (Paelinck 240 

and Klaassen, 1979). Since then, spatial econometric models that effectively identify spatial 241 
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relationships in econometric models have gradually become the main method for studying economic 242 

spatial relationships. Elhorst (2017) and LeSage and Pace (2009) introduced spatial matrices and 243 

promoted the development of spatial empirical research. In this study, the form of the models 244 

proposed by Lee (2002) and Elhorst (2017) was improved to derive our models to further increase the 245 

accuracy of the spatial panel estimations. For the empirical analysis, the external commands in Stata 246 

were used for model building. 247 

Three types of models were constructed in this study: a Spatial-Auto Regressive model (SAR) 248 

(specified in Equation [7]), a Spatial-Error model (SEM) (specified in Equation [8]), and a spatial 249 

Durbin model (SDM) (specified in Equation [9]). 250 

 .,,�� = ' + D3.3�� + �EF�/GF��� + H ∑ I��
+�
� .,,�� + $� + J�� (7) 251 

 .,,�� = ' + D3.3�� + �EF�/GF��� + $� + J�� + K ∑ I��
+�
� J�� (8) 252 

.,,�� = ' + D3.3�� + �EF�/GF��� + H ∑ I��
+�
� .,,�,� + L ∑ I��

+�
� 3.3�� + 2 ∑ I��

+�
� EF�/GF��� +253 

                                                                                 $� + J�� (9) 254 

 ( ,i j =1, 2, …, 30; t = 2000, 2001, …, 2016) 255 

Here, i and j denote provinces and t indicates time. .,,�� is the energy efficiency vector of the ith 256 

province at time t. 3.3��is the vector of our main independent variable, industry agglomeration index. 257 

EF�/GF��� represents the matrix of control variables, including lnGDP, INF, ENS, ENP, RND, and AE. 258 

$� is the cross-sectional intercept term, which donates the spatial fixed effects. I�� is the element of 259 

the ith row and the jth column of the spatial weight matrix that plays a different role in Equations (7), 260 

(8), and (9). For Equation (7), I�� interacts with the spatially lagged dependent variable, .,,��. For 261 

Equation (8), I�� interacts with the spatially dependent random error term, J��. Finally, for Equation 262 

(9), I��  interacts with the spatially lagged dependent variable, .,,�� , and spatially lagged 263 

independent variables, including 3.3�� and EF�/GF���. 264 

Our study selects the binary adjacency matrix as a spatial weight matrix. If the two regions have 265 

a common boundary, the weight of each other is set to 1, and 0 otherwise. We followed the research 266 

paradigm of LeSage and Pace (2009), when we conducted our research on spatial econometric models. 267 

First, we used Moran’s I test to determine whether energy efficiency exists in the global and local 268 

spatial correlation. We then estimated the three types of models as stated in Equations (7), (8), and (9) 269 
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before using the Hausman test to determine the spatial fixed effects panel model that should be 270 

selected to suit our data. During the subsequent SDM estimations, the following hypotheses were also 271 

tested. 272 

Hypothesis 1: M�: L = 2� = 2) =. . . = 2P = 0 273 

Hypothesis 2: M�: (L = −HD)(2� = −H��)(2) = −H�)). . . (2P = −H�P) 274 

For Hypotheses 1 and 2, we applied the Wald tests to the above nonlinear or linear hypotheses 275 

about the parameters of our model. The SDM was a more suitable model than the SAR if Hypothesis 276 

1 was rejected, while the SDM was more suitable than the SEM if Hypothesis 2 was rejected. Lastly, 277 

we replaced the binary adjacency matrix with the inverse-distance matrix to test for robustness. 278 

3. Results 279 

3.1 Spatial characteristics of AEE 280 

3.1.1 Changes and spatial differences in AEE 281 

The SFA estimation results indicate the trend of China’s average AEE in the 2000–2016 period 282 

(Figures 1a, 1b). This result means that the industry’s management efficiency and technical level 283 

unceasingly improved. Among the three regions, East China had the highest AEE during that period, 284 

followed by Central and West China (Figure 1c). The average values were 0.8, 0.726, and 0.671, 285 

respectively, reflecting an obvious gradient from east to west. In terms of the changes, the value for 286 

East China declined from 0.806 to 0.771, that for Central China was basically stable, and that for West 287 

China rose from 0.653 to 0.697. The AEE gaps between the three regions gradually narrowed over 288 

time. 289 

   

a b c 

Figure 1 Average annual energy efficiency (%) 290 
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The AEE at the provincial level similarly exhibited significant regional differentiation (Table 2). 291 

Over the study period, Hainan Province had the highest average AEE at 0.90, and Shanxi Province 292 

had the lowest at 0.45. The latter is located in the country’s interior. Being a large coal-producing 293 

province, its proportion of coal consumption was high. In contrast, the former is located in the south 294 

with a well-developed sea transportation system. The transportation conditions for the respective ENS 295 

of the two provinces might have caused the gap. At the same time, it can be seen from Figure 1 that 296 

the inter-provincial AEE gaps exhibited an expanding trend. 297 

Table 2 Provincial annual average AEE in 2000–2016  298 

Province AEE  Province AEE Province AEE 
Shanghai 0.754 Shanxi 0.445 Hubei 0.803 
Yunnan 0.597 Guangdong 0.832 Hunan 0.743 
Inner 
Mongolia 

0.709 Guangxi 0.841 Gansu 0.539 

Beijing 0.718 Xinjiang 0.744 Fujian 0.863 
Jilin 0.847 Jiangsu 0.885 Guizhou 0.551 
Sichuan 0.808 Jiangxi 0.813 Liaoning 0.836 
Tianjin 0.704 Hebei 0.775 Chongqing 0.643 
Ningxia 0.614 Henan 0.695 Shaanxi 0.665 
Anhui 0.753 Zhejiang 0.780 Qinghai 0.677 
Shandong 0.769 Hainan 0.901 Heilongjiang 0.718 

 299 

3.1.2 Spatial autocorrelation of AEE 300 

Figure 2 shows that the Moran’s I statistics are positively significant at the 10% significance 301 

level for the 2000–2016 period, which means that a global spatial correlation exists in agricultural 302 

energy efficiency among the Chinese provinces. This result was also consistent with the phenomena 303 

of agglomerations of the high and low AEE values (Figure 3). The Moran’s I statistics had a growing 304 

trend over time, indicating that the spatial agglomeration of AEEs became increasingly obvious. 305 
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306 

Figure 2 Moran’s I index bar graph 307 

Note: ***  p < 0.01, ** p < 0.05, * p < 0.1. 308 

  
(i) 2000 (ii) 2016 

Figure 3 Moran scatter plot for Chinese provincial energy efficiency 309 

The next step is to explore the local spatial correlations. We separately use the Moran Scatter 310 

Plots (MSP) and the Local Indication of Spatial Association (LISA) figure to examine the existence of 311 

local spatial correlation of provincial agriculture energy efficiency in China. Figure 3 reports the 312 

Moran Scatter Plots of AEE in 2000 and 2016, where the solid line in the figure is the regression line 313 

of Moran’s I global test, and its slope represents the test statistic. Every dot represents the province’s 314 
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AEE. The abscissa and ordinate are the provincial AEEs after standardization and the spatial lag in 315 

AEEs, respectively. 316 

The MSPs are divided into four quadrants. Quadrants 1 and 3 represent the positive spatial 317 

autocorrelation of the observed values, while Quadrants 2 and 4 represent the negative spatial 318 

autocorrelation. The MSPs for the 2000–2016 period show that most provinces were located in 319 

Quadrants 1 and 3, with only a few in Quadrants 2 and 4. This indicates that the characteristic of 320 

spatial agglomeration by AEE levels was obvious. The provinces with similar AEE levels often 321 

formed clusters: those with high AEE levels were spatially correlated, while those with low AEE 322 

levels were adjacent to one another. From 2000 to 2016, the distribution of provinces had converged 323 

towards Quadrants 1 and 3, indicating that the characteristic of AEE spatial clustering had 324 

strengthened over time. 325 

Figure 4 shows the local LISA clustering pattern on a Chinese map. The high-high and low-low 326 

agglomerations were mostly concentrated in the southeast and northwest regions, respectively. The 327 

former region has better economic development, infrastructural conditions, and technological 328 

innovation capabilities, which promoted better AEE. The high-high versus low-low agglomerations 329 

became increasingly apparent over the years, resulting in greater inter-provincial differentiation. The 330 

number of high AEE provinces along the southeast coast increased, whereas those with low AEEs 331 

became more concentrated in Central China (especially Inner Mongolia and Shanxi Province). The 332 

supporting conditions for agriculture in that region are poor, the infrastructural level is low, and the 333 

ENS is relatively simple. The contribution rate of technological innovation to economic growth is also 334 

low. 335 

  
(i) 2000 (ii) 2016 

Figure 4 LISA cluster map for Chinese provincial energy efficiency 336 

337 
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3.2 Impact of agricultural industrial agglomeration on AEE 338 

Table 3 Estimation results of the spatial panel models 339 

Variables SAR FE SAR RE SEM FE SEM RE SDM FE SDM RE 
IAI 0.229***  0.141***  0.228***  0.146***  0.216***  0.137***  
 (0.016) (0.016) (0.016) (0.015) (0.016) (0.016) 
lnGDP 0.235***  0.040***  0.233***  0.074***  0.224***  0.026* 
 (0.020) (0.012) (0.021) (0.014) (0.022) (0.014) 
INF 0.109***  0.052***  0.108***  0.111***  0.086***  0.014 
 (0.013) (0.014) (0.013) (0.017) (0.017) (0.018) 
ENS -0.099***  -0.125***  -0.097***  -0.093***  -0.108***  -0.132***  
 (0.020) (0.023) (0.020) (0.021) (0.020) (0.022) 
ENP 0.000 -0.039***  0.011 -0.036* -0.022 -0.042** 
 (0.022) (0.015) (0.022) (0.020) (0.021) (0.018) 
RND 0.183 -1.246***  0.081 -0.907***  -0.142 -1.440***  
 (0.336) (0.356) (0.334) (0.335) (0.323) (0.361) 
AE 0.031 -0.457***  0.042 -0.296** 0.138 -0.322** 
 (0.142) (0.142) (0.142) (0.150) (0.140) (0.156) 
Con  0.260***   0.028  0.481***  
  (0.100)  (0.132)  (0.111) 
W × AEE 0.389***  0.293***    0.312***  0.339***  
 (0.091) (0.078)   (0.097) (0.081) 
W × u   0.427***  0.806***    
   (0.106) (0.045)   
W × IAI     -0.194***  -0.264***  
     (0.063) (0.060) 
N 510.000 510.000 510.000 510.000 510.000 510.000 
Regional 
control effect 

Yes Yes Yes Yes Yes Yes 

Time control 
effect 

Yes Yes Yes Yes Yes Yes 

rsq 0.353 0.499 0.528 0.564 0.569 0.665 
Hausman_chi2 39.927***  33.919***  125.526***  
LM test 10.755***  19.952***  —— 

Wald test —— —— 76.31***  51.30***  

L ratio test —— —— 99.63***  47.99***  

Note: The standard deviations are indicated in parentheses; ***  p < 0.01, ** p < 0.05, * p < 0.1.  340 

In Table 3, we present six models, including the fixed-effect model and random effect of SAR, 341 

SEM and SDM. The Hausman test shows that all Hausman chi2 estimators were significant at the 5% 342 

level, which demonstrates that the fixed-effect model is suitable for our estimate. The results of LM of 343 

SAR and SEM test indicate that spatial models are more appropriate than non-spatial models. Further, 344 

we apply the Wald test (Hypothesis 1) and the L ratio test (Hypothesis 2) to verify which model (SAR, 345 

SEM, or SDM) is the most appropriate for our study. The null hypotheses of Wald test and L ratio test 346 

are rejected by all the results, indicating that neither SAR nor SEM can accurately describe the spatial 347 
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relationships of our data and that SDM should be used for analysis. According to the Hausman chi2, 348 

the fixed effect model is more appropriate for our study. Thus, SDM FE is selected for providing the 349 

explanations. After the main control variables are controlled for in the models, the results indicate that 350 

the coefficient of local agricultural agglomeration index is positive and significant at the 1% 351 

significance level However, the spatial lag term of the agricultural agglomeration index has a 352 

significantly negative impact on AEE, which indicates there is a negative spatial spillover effect of 353 

IAI. Finally, we also find the spatial lag term of AEE has a significantly positive impact on AEE, 354 

which shows the positive spillover effect of AEE. 355 

Further, we report the margin effects of agricultural industrial agglomeration on energy efficiency 356 

based on the method proposed by LeSage and Pace (2009). The direct, indirect, and overall average 357 

impacts are shown in Table 4. The direct effect coefficient of industrial energy agglomeration was 358 

0.215, which was significant at the 1% significance level. The implication was that a 1% increase in 359 

the average local energy agglomeration would increase AEE by 0.215%. The indirect impact was 360 

negative but not significant. The overall impact was affected because the indirect negative effects 361 

offset some of the direct positive effects. As a result, when the energy agglomeration level increased 362 

by 1%, the overall AEE increased by only 0.157%. The findings of this study are consistent with those 363 

of other studies about other industries (Liu et al., 2017; Wang et al., 2018; Zheng and Lin, 2018). 364 

In regard to the effect of control variables, the result also demonstrate that the impact of 365 

agricultural GDP on AEE is actually positive. For every 1% increase in agricultural GDP, the energy 366 

efficiency increases by 0.444%, and this result is significant at the 1% level. The consumption 367 

structure and price of energy have a negative impact on energy efficiency, while infrastructure and 368 

R&D expenditure have a positive impact on energy efficiency. For every 1% increase in R&D 369 

expenditure, energy efficiency will increase by 4.381%. This illustrates the importance of scientific 370 

and technological innovation. The influence of agricultural expenditure was not statistically 371 

significant. 372 

  373 



 

 
17 

 

Table 4 Average marginal effects 374 

Variables Direct effect Indirect 
effect 

Total 
Effect 

IAI 0.215***  -0.058 0.157***  

 (0.017) (0.050) (0.059) 

lnGDP 0.228***  0.216***  0.444***  

 (0.021) (0.054) (0.055) 

INF 0.087***  -0.023 0.064** 

 (0.016) (0.033) (0.030) 

ENS -0.111***  -0.104 -0.215***  

 (0.020) (0.068) (0.074) 

ENP -0.024 -0.135***  -0.159***  

 (0.020) (0.042) (0.052) 

RND -0.045 4.426***  4.381***  

 (0.317) (1.134) (1.211) 

AE 0.135 -0.322 -0.187 

 (0.144) (0.330) (0.354) 

Note: The standard deviations are indicated in parentheses; ***  p < 0.01, ** p < 0.05, * p < 0.1. 375 

3.3 Robustness analysis 376 

For the robustness test, we replaced the binary adjacency matrix with the inverse-distance matrix 377 

as the spatial matrix. The inverse-distance matrix, defined as the reciprocal matrix of the distance 378 

from the provincial administrative center, was used to re-estimate the SDM. The Spatial 379 

Autocorrelation model (SAC), which is specified in Equation (10), is also replaced to compare the 380 

estimation results (Elhorst, 2017; LeSage and Pace, 2009).  381 

.,,�� = ' + D3.3�� + �EF�/GF��� + H ∑ I��
+�
� .,,�� + $� + K ∑ I��

+�
� J�� + J��   (10) 382 

where I�� interacts with the spatially lagged dependent variable .,,�� and the spatially dependent 383 

random error term J��. The results (Table 5) are similar to the previous estimates. According to the 384 

Hausman test, the SDM FE is found to be more appropriate than the SDM RE. The results of the 385 

SDM RE (Column 1) show that the main effect coefficient of agricultural industrial agglomeration 386 

remained positive. The spatial lag terms of agricultural industrial agglomeration and AEE remain 387 

negative and positive, respectively. These results are basically consistent with the estimates stated 388 

earlier in the paper. The SAC estimation method is replaced (Column 3). Both the main effect of the 389 

coefficient of agricultural industrial agglomeration and the spatial lag term of the AEE remained 390 

positive. The two aforementioned methods demonstrate the robustness of the earlier estimates. 391 
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Table 5 Estimation results of the SpatialDurbin model and Spatial Autocorrelation model using 392 

the inverse-distance matrix 393 

Variables SDM FE SDM RE SAC 
IAI 0.163***  (0.017) 0.128***  (0.014) 0.223***  (0.016) 
lnGDP 0.221***  (0.019) 0.063***  (0.012) 0.239***  (0.018) 
INF 0.130***  (0.014) 0.135***  (0.016) 0.105***  (0.012) 
ENS -0.095***  (0.020) -0.102***  (0.022) -0.104***  (0.020) 
ENP 0.018 (0.020) -0.003 (0.014) -0.023 (0.021) 
RND 0.475 (0.326) -0.778**  (0.327) 0.584* (0.354) 
AE 0.036 (0.130) -0.295**  (0.126) -0.052 (0.141) 
Con  0.110 (0.126)  
W × AEE 0.246**  (0.108) 0.549***  (0.078) 0.691***  (0.080) 
W × u   -0.817***  (0.248) 
W × IAI -1.077***  (0.145) -0.207***  (0.077)  
N 510.000 510.000 510.000 
Regional control 
effect 

Yes Yes Yes 

Time control 
effect 

Yes Yes Yes 

rsq 0.569 0.63 0.452 
Hausman_chi2 59.046***  59.046***  —— 

Note: The standard deviations are indicated in parentheses; ***  p < 0.01, ** p < 0.05, * p < 0.1. 394 

4. Discussion 395 

In regard to the direct impact, the results of the spatial statistical models confirmed that an 396 

increase in agricultural industrial agglomeration had a positive impact on local AEE. There are three 397 

main possible mechanisms underlying this effect— technology spillover, competition, and a more 398 

mature factor market. First, agricultural industrial agglomeration itself can promote technology and 399 

knowledge spillover to popularize energy efficient agricultural technology and improve the quality of 400 

agricultural labor resources. Second, the industrial agglomeration area generally enhanced 401 

competition in the agricultural industry. Such agglomeration is likely to force those in the agricultural 402 

industry to take the initiative to learn advanced technology, upgrade equipment, reduce costs, improve 403 

competitiveness, and improve energy efficiency through energy conservation and emission reduction 404 

techniques. Third, the regions with high agglomeration levels have larger energy demands and more 405 

mature factor markets, which could provide more high-quality energy or better optimized energy 406 

structures and ultimately improve energy efficiency. 407 

In regard to the indirect impact, we also found that an improvement in neighboring regions’ 408 

agglomeration levels would have a negative effect on AEE. According to the regional division of labor 409 
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theory within the larger agriculture and new economic geography framework (Krugman, 1991), a 410 

region can become differentiated into an industrialized “core” and an agricultural “periphery.” Our 411 

results indicate that the agricultural industrial agglomeration had a negative spillover effect and that 412 

certain production factors, such as capital, technology, and agricultural labor, gathered to the 413 

peripheral regions. This subsequently led to a weakening of the AEE in the core regions. Moreover, 414 

the econometric results showed that the AEE in the neighboring regions also had a positive effect on 415 

the local AEE. It is possible that this finding can be explained by agricultural technology spillover 416 

theory (Evenson, 1989). Energy efficiency is highly related to the agriculture technology and 417 

management pattern, which neighboring regions can easily introduce and learn. Ultimately, when 418 

neighboring regions have higher energy efficiency, this will lead to a higher local energy efficiency. 419 

The Chinese government’s promulgation, titled Opinions on Innovating Systems and Mechanisms 420 

to Advance Green Agricultural Development, proposed that the country should form a green 421 

agricultural production mode gradually. The ultimate aim was to promote the introduction of green 422 

agricultural production methods that improve energy efficiency by increasing outputs while reducing 423 

inputs and emissions. The proposal to “accelerate the construction of a rural clean energy system” will 424 

facilitate the increase of energy efficiency through improving energy consumption structure. The 425 

reduction of energy consumption was also an area of concern in the Sustainable Development Plan of 426 

Agriculture in China (2015-2030). Both aforementioned planning documents mentioned the need to 427 

optimize the spatial layout and accelerate the construction of agricultural functional zones. In the 428 

future, there will inevitably be a further promotion of spatial agglomeration of the agricultural 429 

industries. From the perspective of spatial layout, the Chinese government has launched a 430 

development strategy for the construction of major producing regions for grains and advantageous 431 

regions for characteristic agricultural product. It will further tap the value of agricultural products in 432 

remote and backward areas in the central and western regions, and it will increase the proportion of 433 

agricultural output value in the central and western regions in the whole country. It is expected that 434 

with the expansion of local industrial scale, the efficiency of agricultural energy utilization in the 435 

central and western regions will be improved. Of course, agricultural industrial agglomeration may 436 

also lead to excessive market competition and rising prices of production factors, which are not 437 

conducive to AEE. Therefore, in the future, scientific and reasonable agricultural industry 438 
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development expectations and regional layout should be formed in the whole country and all localities, 439 

and healthy market operation order should be established, which is of great significance to improve 440 

agricultural energy efficiency. 441 

5. Conclusion and Recommendations 442 

This study analyzed the impact of the agglomeration of agricultural industries on AEE. The 443 

results show that China’s average AEEs have continuously improved from 2000 to 2016, and there 444 

were obvious positive spatial correlations, as well as spatial differentiations, with the high-high 445 

agglomerations located in East China and the low-low agglomerations in Central and West China. At 446 

the state level, the agricultural industrial agglomeration has a statistically significant impact on AEE. 447 

Overall, China’s AEE was positively affected by the level of agricultural economic development, the 448 

basic infrastructure, and R&D expenditure, whereas the agricultural coal energy consumption and 449 

energy input costs had negative impacts. 450 

Based on these conclusions, this paper puts forward several policy suggestions to improve the 451 

efficiency of agricultural energy utilization in China. First, the spatial distribution of agricultural 452 

productivity should be further optimized based on regional comparative advantages. Management 453 

should provide more effective measures for the construction of main agricultural production areas 454 

such as grain and characteristic agricultural products aiming to improve the level of production 455 

specialty and industrial agglomeration. Secondly, we should make full use of the spillover effect of 456 

knowledge and technology to strengthen regional technology cooperation, especially mature 457 

technology transfer to the central and western regions. Different energy-saving and efficiency 458 

enhancing measures should be adopted based on its natural and economic endowment in different 459 

regions. Thirdly, we need to promote the research and application of energy-saving technologies in the 460 

agricultural sector by gathering the resources of relative departments such as agriculture and sci-tech. 461 

Technology extension in Green Development should be promoted, with an emphasis on circular 462 

economy. Fourthly, the energy supply structure of agriculture and rural areas should to be optimized. 463 

It would be effective measures to increase investment in new energy and renewable energy equipment, 464 

and increase the proportion of renewable energy such as water, wind and solar energy. 465 

We have explored the impact of AEE on energy efficiency in this article and there are more 466 

in-depth research projects for the future. First, our results show that China's provincial energy 467 



 

 
21 

 

efficiency has simultaneous space lag and space error effects. Agglomeration can promote the 468 

improvement of energy efficiency at the provincial level, but the effects at the municipal and county 469 

level remain unknown, because the data at the municipal and county level are not available at present. 470 

Hence, the researches using the data in smaller scale are necessary in the future with the improvement 471 

of statistical data. Second, we mainly use the spatial parametric models in this study to estimate the 472 

linear spatial effect. The spatial nonparametric models also can be adopted to analyze the nonlinear 473 

relationship between AEE and agricultural industrial agglomeration in the future. 474 

 475 
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Highlights 

 

• We analyzed the impact of industrial agglomeration on agricultural energy efficiency 

(AEE) 

• Spatial econometric models were used to evaluate the impact 

• China’s AEE exhibited significant spatial autocorrelation and differentiation 

• Industrial agglomeration could promote AEE improvements 
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