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Abstract

The rapid development of traditional agricultureGhina was achieved at the expense of high
energy consumption and investments. However, thigadiigreen development trend made it necessary
for the country to transform its agricultural energilization. Energy efficiency changes are aféett
by many factors, particularly industrial agglomérat In recent years, the Chinese government has
introduced a series of policies, including settingjor producing regions for grains and advantageous
regions for characteristic agricultural producte$é have caused significant changes to the spatial
layout of the agriculture industry. However, thésestill a lack of research on the impact of these
changes on agricultural energy efficiency (AEE)this study, panel data of 30 Chinese provinces
from 2000 to 2016 were entered into stochastictigormodels to measure the country’s AEE at the
provincial level. A series of spatial econometriodals were also used to analyze the impact of
agricultural industrial agglomeration on China’s BAEThe results indicate that the country’s AEE
exhibited obvious spatial gradients and correlaioAfter controlling the impacts of spatial
correlation and other factors in the models, adfucal industrial agglomeration was found to hawe a
overall positive impact on China’s AEE. In the frgupolicies should be formulated to increase AEE
by establishing agricultural functional areas, ragtbening the innovation and sharing of green
development technologies at the farm level, andnpting the optimization of energy structures in
agricultural and rural areas.

Keywords: Industrial agglomeration, energy efficiency, spladéiconometrics, agriculture in China

1. Introduction
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In recent years, energy shortages have limitedossmdnomic developments, and the adverse
effects of energy consumption on the ecologicalrenment are increasingly significant (Cherni and
Jouini, 2017; Jiang and Lin, 2013). There is amegmely urgent need to improve energy efficiency to
achieve the sustainable development goals (SD@glieS have found that the global environment
and climate conditions are significantly affectgdtbe energy consumption of agricultural activities
(including fuel and electricity). The industry’srdabution to the global emission of greenhouseegas
ranges from 25% to 35% (David and Michael, 2014)riéultural energy utilization is generally less
efficient in comparison to that of the industriat®r (Wang et al., 2013). Thus, it is criticaréaluce
agricultural energy consumption and carbon emissignimproving AEE. Doing so will promote not
only sustainable agricultural development (Alluwvacet al., 2011; Rafiee et al., 2010) but also reduc
agricultural production costs, increase agricultammpetitiveness and profitability, and effectivel
alleviate poverty (De Janvry and Sadoulet, 2013jdehal., 2011).

Recently, there has been an increasing amount sefareh on the factors affecting energy
efficiency. These factors include technological gpess, management and infrastructural levels,
energy prices, and systems and policies. Studies $teown that technological advances drive energy
efficiency, and that the energy efficiency improwstis arising from changes in technological factors
are significant in most sectors (Makridou et abD1@). The empirical analysis of China’s textile
industry by Lin and Zhao (2016) revealed that tedbgy gaps caused regional energy efficiency
differences in the industry. Energy prices alsectfenergy efficiency (Herrerias et al., 2013) uthio
the related results differ across studies. Foram=, the research findings were negative for the
United States and European Union (EU) countriedl @al., 2015; Makridou et al., 2016) but were
positive for China’s transportation industry (LindaLin, 2018).

Furthermore, other studies ascertained that indlugnergy efficiency is positively correlated
with the level of regional economic development &nel general provision of basic infrastructure
(Cheng, 2016; Li et al., 2018; Vlontzos et al., Z0Zheng and Lin, 2018). Vlontzos et al. (2014)
conducted a representative study on the impacbbies by estimating the AEEs of EU member
states. They found that the implementation of thmm@on Agricultural Policy (CAP) had a

significant positive impact on energy and environtaé efficiencies. For specific individual
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producers, the major obstacles to energy efficiemagrovements were the scale of operation,
management level, and return on assets (Haidér, @049; Moon and Min, 2017; Qin et al., 2017).

Industrial agglomeration generally refers to thexpmity of related activities in the same
industry at a specific geographical space (Billiagsl Johnson, 2016); it is a common phenomenon in
industrial development. Studies have found thaustidal agglomeration can have either positive or
negative impacts on industrial development, therghldating the Williamson hypothesis. The
impact of industrial agglomeration on energy effiaiy has recently received an increase in attention
(Tanaka and Managi, 2017). Some studies suggels&dite industrial agglomeration improve the
scalar and distributional efficiencies of energyading to positive impacts on energy efficiency
(Chang and Oxley, 2008; Liu et al., 2017). Nevdeb® some scholars believed that such effects
could only be achieved after agglomeration hadheda certain level (Zheng and Lin, 2018). Other
studies, however, highlighted that excessive aggtation might lead to various problems, such as
rising prices of production factors and overcapacithich could lead to negative effects. This resul
means that there might be a non-linear and inveldeshape relationship between industrial
agglomeration and production efficiency (Brulhartaathys, 2008; Rizov et al., 2012).

Although China has less than 10% of the world'siltetrable lands, it has to provide food for
more than 20% of the global population. This sitrahas led the agricultural industry to adopt the
approach of high outputs accompanied by high eneogyumption in recent decades (Chen et al.,
2009). A sharp increase in energy consumption sanabusly accompanied rapid agricultural
development. Between the 2000-2016 period, consampacreased from 42.33 million to 85.44
million tons of standard coal equivalent. This éwapresented an overall increase of 101.84%, or an
average of 4.49% per annum, which was higher thargtowth rate of the agricultural output value
over the same period (4.10%). Some studies predibt China’s agricultural energy consumption
would reach 161.61 million tons of standard coalieajent by 2025 (Fei and Lin, 2017), which is
almost double the amount in 2016.

Agricultural development in the country faces tlraillle constraints of resources and environment,
and its relationship with energy efficiency has dyraly received more research attention. A
representative study by Zhang et al. (2019) andlythe AEE and consumption issues of China’s

major producing regions for grains. They highlightthe significant and negative impact that
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agricultural energy consumption had on agricultwaibon emissions. Fei and Lin (2016) used the
data envelopment analysis (DEA) method to measig&EE of China’s agricultural sector based on
East, Central, and West China. The findings indidhtat the agricultural output and mechanical
energy had positive impacts on energy consumptidrereas the agricultural industrial structure,

financial expenditures, and energy prices had nagahpacts. Fei and Lin (2017) found that China’s

agricultural sector still has great potential igasl to saving energy. The Chinese government
introduced a series of policies over the past stveecades, including the setting up of major
producing regions for grains and advantageous msdior characteristic agricultural product. These
policies have brought about significant changesht geographical distribution of the agriculture

industry (Wang et al., 2018). However, researchttmn impact of such changes on AEE is still

lacking.

In summary, although the impact of industrial aggoation on AEE has been verified in many
countries and industries, research in the fiel@loha's AEE based on the perspective of agricultura
industrial agglomeration is lacking. In additiomnet mechanism by which agricultural industrial
agglomeration affects AEE has not been identifiddreover, although existing studies have adopted
the DEA measurement method, the more effectivenpeter frontier model has yet to be applied.
Consequently, the results of the existing studaggain inevitable estimation errors.

This study evaluated AEE at the provincial levahgsstochastic frontier models and analyzed
the impact of agricultural industrial agglomeratiagging spatial econometric models. First, the study
aimed to identify the regional differences in Chsnagricultural energy consumption. Second, the
study clarified the impact of agricultural induatriagglomeration on energy efficiency and the
mechanism by which the former exerts its effectge Tindings will be significant in promoting the
development of green agriculture, energy consematind emissions reduction in China.

The rest of the study is organized as follows. i8a@ introduces the data and models. Section 3
presents the empirical results. Section 4 discuskesimplications of the results. Section 5
summarizes the research findings and proposesypeltlommendations.

2. Data and methodology

2.1 AEE estimation
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There are two main methods to measure AEE: Thdesfagtor indicator and the total-factor
AEE indicator. The former generally uses energysocomption per unit GDP as an inverse indicator
but is unable to reflect the technical efficiendyemergy use (Wilson et al., 1994). The latter is
represented by the DEA and stochastic frontier yaimal(SFA), both of which are based on the
definition of the efficiency frontier. DEA, a norapametric method with no predetermined frontier
function, is widely used in research (Fei and 12016; Heidari et al., 2012; Mousavi-Avval et al.,
2011). However, DEA-generated results are very ifemsto the selection of input and output
variables; they are also easily affected by thepéarsize and data quality (Cook et al., 2014). In
contrast, SFA is a parametric estimation methocdkdbasr maximum likelihood estimation (MLE).
The stochastic frontier model is easier to intargnan the non-parametric method. The reliability o
the results can also be estimated, thereby impgostnmparability (Greene, 2008). This method has
developed rapidly and has been widely applied cemeyears (Boyd and Lee, 2019; Marin and Palma,
2017; Perroni et al., 2016).

This study employed stochastic frontier panel medet its estimations to obtain more results.
This model was introduced by (Aigner et al., 19l its basic form is as follows:

Vit = f(Zit, B)Sicexp(Vir) (1)
where y;, is the production of thé™ region at timet, f(z;, B)is the production functiong;,
represents the inputs of productidf, is the level of a degree of efficiency of ifferegion at time,

& must be in the interval (0,1), ang, is the idiosyncratic errop;, ~ N(0, 0;,).
We further assumed that the production functioa @obb-Douglas function, such that Equation

(1) can be transformed into the following Equat{@j
In(yie) = Bo + =1 By n(zjie) + vie — uye (2
Where u;; = — In(;;) = 0. Two different models were derived from the sgecsettings of they
form: The time-variant and the time-invariant model
As the temporal dimension of this study was lortgan ten years, it was not realistic to assume

that technical efficiencies remained unchanged twes. Thus, we used the Time-variant stochastic

frontier production function models to predict eifincy. The time-variant model was in the form of
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an inefficiency effects model proposed by Battesd €oelli (1995). Lastly, MLE was used for
estimating Equation (2).

This study employs labor (L), capital (K), energynsumption (E), and cultivated area (A) as
input factors and the total value of agriculturaitput (Y) as the output variable to construct a
stochastic frontier model of the panel data. Theas a high probability of technological changes
since the study spanned the 2000-2016 period. &, @n annual dummy variablevas added in
Equation (3):

InYy=apg+a;nLyp+a,nKiyy +azsInEyy +a,nAy +t + v —uy 3)
wherei represents thé" province and denotes time; Y is the value-added to the GDP by the
primary industry, which was converted to a conspaite with 2000 as the base yeais the number
of people employed in the primary industdy;is the agricultural crop acreage; aBds the energy
consumption of the primary industry, which could he directly obtained from the existing statistics
Instead, the physical quantities of raw coal, ei€ity, natural gas, gasoline, and diesel consulned
the forestry, animal husbandry, and fishery indestof the various provinces were converted to
standard coal equivalent to represent the enengyuroption. Please refer to the annDiina Energy
Satistical Yearbook for the specific conversion factors, whefeis random disturbance termy is
technical inefficiency studied above, adds capital stock.

In this study, the agricultural capital stock wasasured using the perpetual inventory method
(Goldsmith, 1951). The specific equation for tlsis€iquation 4, which is as follows:

Kit = Kig—1(1 = 63¢) + It (4)
whereK is the capital stock agricultural base year (200fjich referenced the research findings of
Zong and Liao (2014), arids the annual fixed assets investments. Geneth#yideal data would be
the total fixed capital formation of the primarydirstry. Thus, considering the problem with data
acquisition, this study used the fixed assets imvests by the agricultural, forestry, animal hushgn
and fishery industries as the substitute. During ¢llculation process, it was necessary to first
construct a price index for the annual fixed assetsstments. Next, the index sequence was used to
deflate the annual investments of several yearsréghe amounts were converted to actual values
expressed in the constant price of the base yaarthe economic depreciation rate. The value 6#®.

was adopted (Zhang et al., 2004).
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2.2 Independent and control variables
The independent variable of the study was the imdlisgglomeration index (IAl). The control
variables included the industrial economic levetGDP), basic infrastructure (INF), energy
consumption structure (ENS), energy price (ENP),DR&xpenditure (RND), and agricultural
expenditure (AE). Table 1 displays the descripsitadistics of our data.
i. 1Al: Position entropy was used to measure the levelgofultural industrial agglomeration,
which is also known as the regional specializatimex. It is an effective indicator for measuring

the level of agricultural industrial agglomeratiasin Equation (5) (Otsuka et al., 2014).

ei]-

Z?Oeij
IAL;; = ST (5)
21-302? ejj
[AIL] el-j
Where represents the position entropy of fhiedustry in the province, and  represents the

output value of the j industry in th®8 province (i=1,2.3... 30).= 1,2,3, representing the first, second

and third industries. This study only calculate@ position entropy of the first industry in each

province. The higher the position entropy is, tighlr the degree of agglomeration is.

ii. InGDP: Developed regions usually receive more financigdp®rt, which is accompanied by
technological innovation, infrastructure, and otivaprovements. Higher levels of economic
development generally have a positive impact onrggnefficiency (Sadorsky, 2013). In this
study, the level of economic development was remiesl by agricultural GDP in logarithmic
form. A deflator was used to convert it to an infiexa fixed base period.

iii. INF: Improvements to the basic infrastructure redueesiportation energy consumption and
increase the efficiency of energy flow, therebyedily increasing AEE. This study used the road
mileage per unit area in the various provinces ¢éasuare the regional infrastructure levels.

iv. ENS: Different types of energy have varying efficiersci€or example, the efficiency of diesel

and coal are relatively low compared with otherrgpeproducts (Lin and Zhu, 2017). The
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Vii.

regional ENS also affects AEE. This study used phaportion of agricultural coal energy
consumption of the various provinces to repredemtégional ENS.

ENP: Fuel price changes have a significant impact arggninput costs. As a result, producers
and operators pay more attention to energy consenval herefore, it is believed that a rise in
energy prices helps improve energy efficiency (Byeal., 2018). This study used the purchasing
price index of raw materials, fuel, and power (FR)Rf the various provinces to represent ENP.
RND: High levels of scientific and technological knodge can contribute to the heightening of
energy-saving awareness, technological innovatipapularization, and application, which are
the key factors to improving energy efficiency. Tdwpenditure on scientific and technological
knowledge was represented in this study by theesbiaresearch and development expenditure in
the total regional fiscal expenditures.

AE: It is generally believed that, on the one hand, government’s agricultural investments
represent the government's intervention in the @wgn which distorts resource allocation and
therefore has an adverse impact on the long-tereldgment of agriculture. On the other hand,
these investments also improve the infrastructma lzasic conditions of agriculture, forestry,
and water, and increase the promotion of technolggiier way, AEE is affected. In this study,
AE is represented by the share of agricultural egfiares in the total regional fiscal
expenditures.

Table 1 Descriptive statistics of key variables

o

Variable Name bs Mean S.D. Min Median Max
AEE - 0.73 0.118 0.37 0.76 0.92
1Al - 1.17 0.58 0.05 1.21 3.10
LnGDP o 9.66 0.67 7.94 9.69 11.12
INF o 0.69 0.46 0.02 0.59 2.11
ENS o 0.28 0.24 0.00 0.20 0.95
ENP - 5.21 0.36 4.59 5.24 6.41
RND - 0.02 0.01 0.00 0.01 0.07
AE - 0.09 0.04 0.01 0.09 0.19
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2.3 Data source

The research subjects of this study were Chinasr8dinces and cities (Tibet was excluded due
to incomplete data) during the 2000-2016 period. éach province, the statistical yearbooks of
China and the various provinces for the correspangiears were used to acquire the raw data of the
following: the GDP and deflator index, agricultupgpulation, fixed assets investments in agricaltur
forestry, animal husbandry, and fishery, highwayeage, regional land area, fiscal expenditure,
population engaged in the agricultural industryd aamber of high school graduates. The PPIRMs
were obtained from the various provincial statedtigearbooks. The physical consumption of raw coal,
electricity, natural gas, gasoline, and diesel d&nme conversion coefficients for standard coal
equivalent were obtained from the relev@hina Energy Satistical Yearbooks and provincial statistical
yearbooks.
2.4 Empirical models
2.4.1 Spatial autocorrelation test

We first used the Moran’s | test method to verlig existence of spatial dependence in energy

efficiency among the provinces. The Moran’s | test we used was as follows (Equation [6]):
_ nZ?zlz;l:l wij(AEEi—m)(AEEj—M)

—=
21 (AEE—AEE) ¥, 2?21 Wij

(6)
A significant Moran’s | index means that a globphtal correlation exists. Moran's Scatter Plots
(MSP) and the Local Indication of Spatial Assoaat(LISA) are then utilized to test the local sphti
correlationof the provincial agricultural energy efficiency@hina.
2.4.2 Spatial econometric models

The majority of existing studies used the dynanmangd or Tobit model for their regression
analyses to explore the factors affecting AEE. €hasthods ignore that, in reality, a geospatial AEE
spillover effect exists (Pan et al., 2015). Studiage shown that there were obvious spatial sgtov
effects in energy consumption and that the regidiffdrentiation of factors was obvious. Studieatth
ignore the spatial factors may produce estimativore (Camioto et al., 2016; Liu et al., 2017). The
Belgian economist Jean Paelinck proposed the $paimometric model in the late 1970s (Paelinck

and Klaassen, 1979). Since then, spatial econametiddels that effectively identify spatial



242  relationships in econometric models have graduadigome the main method for studying economic
243  spatial relationships. Elhorst (2017) and LeSage Race (2009) introduced spatial matrices and
244  promoted the development of spatial empirical regealn this study, the form of the models
245  proposed by Lee (2002) and Elhorst (2017) was ingmido derive our models to further increase the
246  accuracy of the spatial panel estimations. Foretiheirical analysis, the external commands in Stata
247  were used for model building.

248 Three types of models were constructed in thisystadSpatial-Auto Regressive model (SAR)
249  (specified in Equation [7]), a Spatial-Error mod8EM) (specified in Equation [8]), and a spatial

250  Durbin model (SDM) (specified in Equation [9]).

251 AEE;; = a + yIAl; + BControl;, + p Z?OWU- AEEj +u; + &t @)
252 AEE;; = a +yIAl; + BControly +u; + & + /125?0 Wi &t (8)
253 AEE;; = a + yIAl; + BControl;, + p Z?OWU AEE;; + 60 Z?OWU 1AL + 62?0 w;; Control;, +
254 u; + &t 9)
255 (i, ] =1,2,...,30t= 2000, 2001, ..., 2016)

256  Here,i andj denote provinces ardindicates time.AEE;, is the energy efficiency vector of tff&
257  province at timed. [Al;is the vector of our main independent variableustd; agglomeration index.
258  Control;; represents the matrix of control variables, intigdnGDP, INF, ENS, ENP, RND, and AE.
259  wu; is the cross-sectional intercept term, which desdhe spatial fixed effectsv;; is the element of
260  thei™ row and thg™ column of the spatial weight matrix that playsitfedent role in Equations (7),
261 (8), and (9). For Equation (7)y;; interacts with the spatially lagged dependentalde,AEE;,. For
262  Equation (8),w;; interacts with the spatially dependent randomreteam, ¢;.. Finally, forEquation
263  (9), w;; interacts with the spatially lagged dependent aide, AEE;,, and spatially lagged
264  independent variables, includingll;; and Control;.

265 Our study selects the binary adjacency matrix sgatial weight matrix. If the two regions have
266 a common boundary, the weight of each other idgcsé&t and 0 otherwise. We followed the research
267  paradigm of LeSage and Pace (2009), when we coedloctr research on spatial econometric models.
268  First, we used Moran’s | test to determine wheteergy efficiency exists in the global and local

269  spatial correlation. We then estimated the threedyof models as stated in Equations (7), (8),(&nd

10
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before using the Hausman test to determine thdasgated effects panel model that should be
selected to suit our data. During the subsequeM 88&tlimations, the following hypotheses were also
tested.

Hypothesis 1: Hy:0 = §; = 6, =...= 6 = 0

Hypothesis 2: Hy: (6 = —py)(61 = —pP1)(82 = —pB2)... (66 = —pBs)

For Hypotheses 1 and 2, we applied the Wald testhe above nonlinear or linear hypotheses
about the parameters of our model. The SDM was 1@ sutable model than the SAR if Hypothesis
1 was rejected, while the SDM was more suitabla the SEM if Hypothesis 2 was rejected. Lastly,
we replaced the binary adjacency matrix with theeree-distance matrix to test for robustness.

3. Results
3.1 Spatial characteristics of AEE
3.1.1 Changes and spatial differences in AEE

The SFA estimation results indicate the trend oin&k average AEE in the 2000-2016 period
(Figures la, 1b). This result means that the imggstmanagement efficiency and technical level
unceasingly improved. Among the three regions, E&sta had the highest AEE during that period,
followed by Central and West China (Figure 1c). Bwerage values were 0.8, 0.726, and 0.671,
respectively, reflecting an obvious gradient froasteto west. In terms of the changes, the value for
East China declined from 0.806 to 0.771, that fent@al China was basically stable, and that fortWes
China rose from 0.653 to 0.697. The AEE gaps beatvike three regions gradually narrowed over

time.

&
2
e

g Vs
B

Awarage annual energy using efliclnc:
[ B

2

@,

o 2000 2002 204 FO06 2006 20 2012 2014 016

I N Ty o S Vetir
00 FOOF P0G 2006 2008 20D M ZOM F016 5 . C =
year erergy usieg sfficeny (%) —&— Eastem regan —&— Ventrairegion —8— Wastern reglan

a b c

Figure 1 Average annual energy efficiency (%)

11



291
292
293
294
295
296
297

298

299
300
301
302
303
304
305

The AEE at the provincial level similarly exhibitegjnificant regional differentiation (Table 2).
Over the study period, Hainan Province had thedsglaverage AEE at 0.90, and Shanxi Province
had the lowest at 0.45. The latter is located & ¢buntry’s interior. Being a large coal-producing
province, its proportion of coal consumption waghhiln contrast, the former is located in the south
with a well-developed sea transportation systene. ffénsportation conditions for the respective ENS
of the two provinces might have caused the gaghétsame time, it can be seen from Figure 1 that
the inter-provincial AEE gaps exhibited an expagdiend.

Table 2 Provincial annual average AEE in 2000—-2016

Province AEE Province AEE Province AEE
Shanghai 0.754 Shanxi 0.445 Hubei 0.803
Yunnan 0.597 Guangdong 0.832 Hunan 0.743
Inner 0.709 Guangxi 0.841 Gansu 0.539
Mongolia
Beijing 0.718 Xinjiang 0.744 Fujian 0.863
Jilin 0.847 Jiangsu 0.885 Guizhou 0.551
Sichuan 0.808 Jiangxi 0.813 Liaoning 0.836
Tianjin 0.704 Hebei 0.775 Chongging 0.643
Ningxia 0.614 Henan 0.695 Shaanxi 0.665
Anhui 0.753 Zhejiang 0.780 Qinghai 0.677
Shandong 0.769 Hainan 0.901 Heilongjiang 0.718

3.1.2 Spatial autocorrelation of AEE

Figure 2 shows that the Moran’s | statistics arsitpe@ly significant at the 10% significance
level for the 2000-2016 period, which means thatodbal spatial correlation exists in agricultural
energy efficiency among the Chinese provinces. Téssilt was also consistent with the phenomena
of agglomerations of the high and low AEE valuegyFe 3). The Moran’s | statistics had a growing

trend over time, indicating that the spatial aggtoation of AEEs became increasingly obvious.

12
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Figure 2 Moran’s | index bar graph

Note:™ p <0.01, **p < 0.05, *p < 0.1.

Moran’s 1 =0.128
1 1

AEE

(i) 2000

Moran’s | = 0.335

AEE

(ii) 2016

Figure 3 Moran scatter plot for Chinese provincialenergy efficiency

The next step is to explore the local spatial dati@ns. We separately use the Moran Scatter

Plots (MSP) and the Local Indication of Spatial ddation (LISA) figure to examine the existence of

local spatial correlation of provincial agricultuemergy efficiency in China. Figure 3 reports the

Moran Scatter Plots of AEE in 2000 and 2016, wlieeesolid line in the figure is the regression line

of Moran’s | global test, and its slope represéhéstest statistic. Every dot represents the poaisn
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AEE. The abscissa and ordinate are the provinciEEfafter standardization and the spatial lag in
AEEs, respectively.

The MSPs are divided into four quadrants. Quadrantnd 3 represent the positive spatial
autocorrelation of the observed values, while Qamidr 2 and 4 represent the negative spatial
autocorrelation. The MSPs for the 2000-2016 pesbdw that most provinces were located in
Quadrants 1 and 3, with only a few in Quadrant:@ 4. This indicates that the characteristic of
spatial agglomeration by AEE levels was obviouse Thovinces with similar AEE levels often
formed clusters: those with high AEE levels weratisly correlated, while those with low AEE
levels were adjacent to one another. From 200®@1® 2the distribution of provinces had converged
towards Quadrants 1 and 3, indicating that the atharistic of AEE spatial clustering had
strengthened over time.

Figure 4 shows the local LISA clustering patternao@hinese map. The high-high and low-low
agglomerations were mostly concentrated in thehe@st and northwest regions, respectively. The
former region has better economic development,agtifuctural conditions, and technological
innovation capabilities, which promoted better ABHe high-high versus low-low agglomerations
became increasingly apparent over the years, megult greater inter-provincial differentiation. &h
number of high AEE provinces along the southeaasttincreased, whereas those with low AEEs
became more concentrated in Central China (espedmer Mongolia and Shanxi Province). The
supporting conditions for agriculture in that regiare poor, the infrastructural level is low, ahd t
ENS is relatively simple. The contribution ratet@thnological innovation to economic growth is also

low.

1,000

(i) 2000 (i) 2016

Figure 4 LISA cluster map for Chinese provincial erergy efficiency
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338 3.2 Impact of agricultural industrial agglomeration on AEE
339 Table 3 Estimation results of the spatial panel maogls
Variables SAR FE SAR RE SEM FE SEM RE SDM FE SDM RE
IAl 0.229" 0.141" 0.228" 0.146" 0.216" 0.137"
(0.016) (0.016) (0.016) (0.015) (0.016) (0.016)
InGDP 0.235" 0.040" 0.233" 0.074” 0.224" 0.026*
(0.020) (0.012) (0.021) (0.014) (0.022) (0.014)
INF 0.109" 0.052" 0.108" 0.111" 0.086" 0.014
(0.013) (0.014) (0.013) (0.017) (0.017) (0.018)
ENS -0.098" -0.125" -0.097" -0.093" -0.108" -0.132"
(0.020) (0.023) (0.020) (0.021) (0.020) (0.022)
ENP 0.000 -0.038 0.011 -0.036* -0.022 -0.042**
(0.022) (0.015) (0.022) (0.020) (0.021) (0.018)
RND 0.183 -1.246 0.081 -0.907 -0.142 -1.448
(0.336) (0.356) (0.334) (0.335) (0.323) (0.361)
AE 0.031 -0.457 0.042 -0.296** 0.138 -0.322%*
(0.142) (0.142) (0.142) (0.150) (0.140) (0.156)
Con 0.260 0.028 0.481
(0.100) (0.132) (0.111)
W x AEE 0.389" 0.293 0.312" 0.339
(0.091) (0.078) (0.097) (0.081)
W x u 0.427 0.806"
(0.106) (0.045)
W x IA -0.194" -0.264"
(0.063) (0.060)
N 510.000 510.000 510.000 510.000 510.000 510.000
Regional Yes Yes Yes Yes Yes Yes
control effect
Time control Yes Yes Yes Yes Yes Yes
effect
rsq 0.353 0.499 0.528 0.564 0.569 0.665
Hausman_chi 39.927" 33.919" 125.526"
LM test 10.755 19.957” o
Wald test — — 76.31 51.30"
L ratio test . . 99.63" 47.997

340  Note: The standard deviations are indicated iniheses;” p < 0.01, ** p < 0.05, * p < 0.1.

341 In Table 3, we present six models, including thedieffect model and random effect of SAR,
342 SEM and SDM. The Hausman test shows that all Hanstha estimators were significant at the 5%
343 level, which demonstrates that the fixed-effect alasl suitable for our estimate. The results of &M
344  SAR and SEM test indicate that spatial models aveerappropriate than non-spatial models. Further,
345  we apply the Wald test (Hypothesis 1) and the loraist (Hypothesis 2) to verify which model (SAR,
346 SEM, or SDM) is the most appropriate for our studye null hypotheses of Wald test and L ratio test

347  are rejected by all the results, indicating thathee SAR nor SEM can accurately describe the apati
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relationships of our data and that SDM should bedldsr analysis. According to the Hausmarf,chi
the fixed effect model is more appropriate for stwdy. Thus, SDM FE is selected for providing the
explanations. After the main control variables @oatrolled for in the models, the results indictulat
the coefficient of local agricultural agglomeratioamdex is positive and significant at the 1%
significance level However, the spatial lag term tbé agricultural agglomeration index has a
significantly negative impact on AEE, which indieatthere is a negative spatial spillover effect of
IAl. Finally, we also find the spatial lag teraf AEE has a significantly positive impact on AEE,
which shows the positive spillover effect of AEE.

Further, we report the margin effects of agric@tiundustrial agglomeration on energy efficiency
based on the method proposed by LeSage and P&2@).(dhe direct, indirect, and overall average
impacts are shown in Table 4. The direct effectffment of industrial energy agglomeration was
0.215, which was significant at the 1% significatexel. The implication was that a 1% increase in
the average local energy agglomeration would irr@e®EE by 0.215%. The indirect impact was
negative but not significant. The overall impactswaifected because the indirect negative effects
offset some of the direct positive effects. As sule when the energy agglomeration level increased
by 1%, the overall AEE increased by only 0.157%e Tihdings of this study are consistent with those
of other studies about other industries (Liu et2017; Wang et al., 2018; Zheng and Lin, 2018).

In regard to the effect of control variables, tlesult also demonstrate that the impact of
agricultural GDP on AEE is actually positive. Foeey 1% increase in agricultural GDP, the energy
efficiency increases by 0.444%, and this resulsignificant at the 1% level. The consumption
structure and price of energy have a negative impacenergy efficiency, while infrastructure and
R&D expenditure have a positive impact on enerdyciehcy. For every 1% increase in R&D
expenditure, energy efficiency will increase by8L%. This illustrates the importance of scientific
and technological innovation. The influence of agitural expenditure was not statistically

significant.
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Table 4 Average marginal effects

Variables Direct effect Indirect Total

effect Effect

IAl 0.215" -0.058 0.157
(0.017) (0.050) (0.059)

INnGDP 0.228" 0.216" 0.444"
(0.021) (0.054) (0.055)
INF 0.087" -0.023 0.064**
(0.016) (0.033) (0.030)

ENS -0.111" -0.104 -0.21%
(0.020) (0.068) (0.074)

ENP -0.024 -0.135 -0.159”
(0.020) (0.042) (0.052)

RND -0.045 4.426 4.381"
(0.317) (1.134) (1.211)
AE 0.135 -0.322 -0.187
(0.144) (0.330) (0.354)

Note: The standard deviations are indicated inngheses;” p < 0.01, ** p < 0.05, * p < 0.1.
3.3 Robustness analysis

For the robustness test, we replaced the binagcadgy matrix with the inverse-distance matrix
as the spatial matrix. The inverse-distance mattefined as the reciprocal matrix of the distance
from the provincial administrative center, was used re-estimate the SDM. The Spatial
Autocorrelation model (SAC), which is specified Eguation (10), is also replaced to compare the
estimation results (Elhorst, 2017; LeSage and P20f29).

AEE; = a +yIAl; + fControl;, + pZ?OWU AEEj +u; + AZ?OWU &t + &t (10)
where w;; interacts with the spatially lagged dependentaide AEE;, and the spatially dependent
random error ternk;.. The results (Table 5) are similar to the previesmates. According to the
Hausman test, the SDM FE is found to be more apg@tepthan the SDM RE. The results of the
SDM RE (Column 1) show that the main effect coédfit of agricultural industrial agglomeration
remained positive. The spatial lag terms of agtizal industrial agglomeration and AEE remain
negative and positive, respectively. These resanésbasically consistent with the estimates stated
earlier in the paper. The SAC estimation methogmaced (Column 3). Both the main effect of the
coefficient of agricultural industrial agglomerati@and the spatial lag term of the AEE remained

positive. The two aforementioned methods demorestre robustness of the earlier estimates.
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392 Table 5 Estimation results of the SpatialDurbin mo@l and Spatial Autocorrelation model using
393 the inverse-distance matrix
Variables SDM FE SDM RE SAC

1Al 0.163" (0.017) 0.128 (0.014) 0.223 (0.016)

InGDP 0.221" (0.019) 0.063" (0.012) 0.239 (0.018)

INF 0.130” (0.014) 0.135" (0.016) 0.105" (0.012)

ENS -0.095" (0.020)  -0.102" (0.022) -0.104" (0.020)

ENP 0.018 (0.020) -0.003 (0.014) -0.023 (0.021)

RND 0.475 (0.326) -0.778(0.327) 0.584(0.354)

AE 0.036 (0.130) -0.295(0.126) -0.052 (0.141)

Con 0.110 (0.126)

W x AEE 0.246 (0.108) 0.549 (0.078) 0.691" (0.080)

W xu -0.817" (0.248)

W x |Al -1.0777 (0.145)  -0.207 (0.077)

N 510.000 510.000 510.000

Regional control Yes Yes Yes

effect

Time control Yes Yes Yes

effect

rsq 0.569 0.63 0.452

Hausman_chi 59.046" 59.046"
394  Note: The standard deviations are indicated inniheses;” p < 0.01, ** p < 0.05, * p < 0.1.
395 4. Discussion
396 In regard to the direct impact, the results of #patial statistical models confirmed that an
397 increase in agricultural industrial agglomerati@dta positive impact on local AEE. There are three
398 main possible mechanisms underlying this effect-ehelogy spillover, competition, and a more
399 mature factor market. First, agricultural indudtagglomeration itself can promote technology and
400 knowledge spillover to popularianergy efficient agricultural technology and impedhe quality of
401 agricultural labor resources. Second, the industagglomeration area generally enhanced

402  competition in the agricultural industry. Such agygeration is likely to force those in the agricuatu
403 industry to take the initiative to learn advancechihology, upgrade equipment, reduce costs, improve
404  competitiveness, and improve energy efficiency agtoenergy conservation and emission reduction
405 techniques. Third, the regions with high agglomeratevels have larger energy demands and more
406 mature factor markets, which could provide morehkigality energy or better optimized energy
407  structures and ultimately improve energy efficiency

408 In regard to the indirect impact, we also foundt tha improvement in neighboring regions’

409 agglomeration levels would have a negative effacABE. According to the regional division of labor
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theory within the larger agriculture and new economic gappy framework (Krugman, 1991), a
region can become differentiated into an indushea “core” and an agricultural “periphery.” Our
results indicate that the agricultural industrighlmeration had a negative spillover effect arat th
certain production factors, such as capital, teldgy and agricultural labor, gathered to the
peripheral regions. This subsequently led to a emiag of the AEE in the core regions. Moreover,
the econometric results showed that the AEE imtfighboring regions also had a positive effect on
the local AEE. It is possible that this finding che explained by agricultural technology spillover
theory (Evenson, 1989). Energy efficiency is highmblated to the agriculture technology and
management pattern, which neighboring regions eemilyeintroduce and learn. Ultimately, when
neighboring regions have higher energy efficietiug will lead to a higher local energy efficiency.
The Chinese government’s promulgation, tit{®a nions on Innovating Systems and Mechanisms
to Advance Green Agricultural Development, proposed that the country should form a green
agricultural production mode gradually. The ultimaim was to promote the introduction of green
agricultural production methods that improve enezficiency by increasing outputs while reducing
inputs and emissions. The proposal to “accelehsednstruction of a rural clean energy system!’ wil
facilitate the increase of energy efficiency througiproving energy consumption structure. The
reduction of energy consumption was also an areamdern in théustainable Development Plan of
Agriculture in China (2015-2030). Both aforementioned planning documents mentidhedneed to
optimize the spatial layout and accelerate the toocton of agricultural functional zones. In the
future, there will inevitably be a further promatimf spatial agglomeration of the agricultural
industries. From the perspective of spatial laydime Chinese government has launched a
development strategy for the construction of mgjarducing regions for grains and advantageous
regions for characteristic agricultural productwlitl further tap the value of agricultural prodsdh
remote and backward areas in the central and westgions, and it will increase the proportion of
agricultural output value in the central and wastegions in the whole country. It is expected that
with the expansion of local industrial scale, ttiiciency of agricultural energy utilization in the
central and western regions will be improved. Ofirse, agricultural industrial agglomeration may
also lead to excessive market competition andgigrices of production factors, which are not

conducive to AEE. Therefore, in the future, sciémtiand reasonable agricultural industry
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development expectations and regional layout shioaltbrmed in the whole country and all localities,
and healthy market operation order should be estedul, which is of great significance to improve
agricultural energy efficiency.

5. Conclusion and Recommendations

This study analyzed the impact of the agglomeratibragricultural industries on AEE. The
results show that China’s average AEEs have caotisly improved from 2000 to 2016, and there
were obvious positive spatial correlations, as veall spatial differentiations, with the high-high
agglomerations located in East China and the lawdgglomerations in Central and West China. At
the state level, the agricultural industrial aggboation has a statistically significant impact oBEA
Overall, China’'s AEE was positively affected by teeel of agricultural economic development, the
basic infrastructure, and R&D expenditure, wherts agricultural coal energy consumption and
energy input costs had negative impacts.

Based on these conclusions, this paper puts foraavdral policy suggestions to improve the
efficiency of agricultural energy utilization in @ia. First, the spatial distribution of agricultbra
productivity should be further optimized based egional comparative advantages. Management
should provide more effective measures for the ttooson of main agricultural production areas
such as grain and characteristic agricultural petsdl@iming to improve the level of production
specialty and industrial agglomeration. Secondlg, should make full use of the spillover effect of
knowledge and technology to strengthen regionahrtelogy cooperation, especially mature
technology transfer to the central and westernoregi Different energy-saving and efficiency
enhancing measures should be adopted based oatitsalnand economic endowment in different
regions. Thirdly, we need to promote the reseanchagplication of energy-saving technologies in the
agricultural sector by gathering the resourceslzftive departments such as agriculture and shi-tec
Technology extension in Green Development shouldoifmenoted, with an emphasis on circular
economy. Fourthly, the energy supply structuregsfcalture and rural areas should to be optimized.
It would be effective measures to increase investnmenew energy and renewable energy equipment,
and increase the proportion of renewable energly asavater, wind and solar energy.

We have explored the impact of AEE on energy edficy in this article and there are more

in-depth research projects for the future. Firatr cesults show that China's provincial energy
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efficiency has simultaneous space lag and spaaw effects. Agglomeration can promote the
improvement of energy efficiency at the provindalel, but the effects at the municipal and county
level remain unknown, because the data at the rpahiand county level are not availalaiepresent.
Hence, the researches using the data in smaller @@@necessary in the future with the improvement
of statistical data. Second, we mainly use theigpa@rametric models in this study to estimate the
linear spatial effect. Thepatial nonparametric models also can be adopteaatyze the nonlinear

relationship between AEE and agricultural industrgglomeration in the future.
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Highlights

We analyzed the impact of industrial agglomeratan agricultural energy efficiency
(AEE)

Spatial econometric models were used to evaluatertpact

China’s AEE exhibited significant spatial autoctati®on and differentiation

Industrial agglomeration could promote AEE improesrts
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