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Model-based projections of energy demand are hardly ever confronted with observations. This shortfall
threatens the credibility policy-makers might attach to integrated energy-economy models. One reason for it is
the lack of historical data againstwhich to calibratemodels, a prerequisite for attempting to replicate past trends.
In this paper, we (i) assemble piecemeal historical data to reconstruct the energy performance of the residential
building stock of 1984 in France; (ii) calibrate Res-IRF, a bottom-up model of residential energy demand in
France, against these data and run it to 2012. In a preliminary simulation with model parameters based only
on the data thatwere known at the beginning of the simulated period, we find that themodel accurately predicts
energy consumption per m2 aggregated over all dwelling types: the Mean Absolute Percentage Error is below
1.5% and 85% of the variance is explained, which builds confidence in the general accuracy of the Res-IRF
model. Then we run 1920 simulations covering the uncertainty surrounding the parameters of the initial year.
Even in simulationswhich fit the data best, energydemand is unevenlywell replicated across fuels,which reveals
some limitations in the ability of the model to capture politically-driven policies such as the expansion of the
natural-gas distribution network.We discuss the directions for data collectionwhichwould ease comparison be-
tween simulations and observations in future hindcast experiments.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction1

Prediction might be difficult when it's about the future,2 but as we
argue here, it can also be a daunting task when it comes to the past.

Inmost natural and engineering sciences, models are routinely com-
pared to observations; cf. e.g. Legates and McCabe Jr (1999) in hydrol-
ogy, Brisson et al. (2002) in agronomy and Dudhia (1993) in climate
science. For example, all climate models used for IPCC reports have
been run using past forcing data (greenhouse gas concentrations, solar
irradiance, volcanism…). International model intercomparison projects
like CMIP3 gather manymodeling teams and provide themwith a set of
standard scenarios, tools and observational data, so that model outputs

can be compared to one another, and to observations. Indeed comparing
outputs of retrospective simulations to observations – a method re-
ferred to as “hindcasting”, “backtesting”, “predictive validation” or
“cross-validation” – is essential to determine howwell these models in-
corporate different parts of the climate system. This helps build confi-
dence in model projections and identify model limitations that should
be addressed in future research.

Such comparisons between retrospective simulations and observa-
tions are infrequent in economics, as highlighted by several researchers
(Valenzuela et al., 2007; Beckman et al., 2011; Baldos and Hertel, 2013;
Northcott, 2019), in particular in energy economics. Energy-economy
models include parameters calibrated or econometrically estimated on
past data, but their ability to replicate past evolutions is rarely assessed
(Beckman et al., 2011).

This scarcity of hindcasting exercises may be primarily explained by
the lack of observational data against which to compare simulations, as
noted by Chaturvedi et al. (2013). Moreover, the exercise has its own
limitations, since the ability of a model to replicate past observations
does not prove it a relevant tool for long-term projections (Calvin
et al., 2017; Oreskes, 1998). Conversely, any inconsistency between
simulations and observations at one point in timemay be due to factors

Energy Economics 84 (2019) 104452

☆ Publication of this supplement was supported by ETH Zürich, the University of
Münster and Economics for Energy.
⁎ Corresponding author.

E-mail address: quirion@centre-cired.fr (P. Quirion).
1 For their very useful comments, we thank two anonymous referees from Energy

Economics, an anonymous referee from the FAERE Working paper series, Améline Vallet
and Vincent Viguié.

2 Apocryphal quote generally attributed to the physicist Niels Bohr (1885–1962).
3 https://pcmdi.llnl.gov/?projects/cmip/index.php

https://doi.org/10.1016/j.eneco.2019.07.012
0140-9883/© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

Energy Economics

j ourna l homepage: www.e lsev ie r .com/ locate /eneeco

https://doi.org/10.1016/j.eneco.2019.07.012
quirion@centre-cired.fr
https://doi.org/10.1016/j.eneco.2019.07.012
http://www.sciencedirect.com/science/journal/01409883
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eneco.2019.07.012&domain=pdf


unlikely to happen again in the future, a point which we address in
Section 5 below.

Despite these limitations, the scarcity of hindcasting exercises has
raised severe criticism. For instance, Kehoe (2005) writes “it is the re-
sponsibility of modelers to demonstrate that their models are capable
of predicting observed changes, at least ex post. If a modeling approach
is not capable of reproducingwhat has happened, we should discard it.”
Koomey et al. (2003) make the point more bluntly: “One of the most
striking things about forecasters is their lack of historical perspective.
They rarely do retrospectives, even though looking back at past work
can both illuminate the reasons for its success or failure, and improve
the methodologies of current and future forecasts”.

A few hindcasting exercises based on economic models (mostly ap-
plied to energy, trade policies or agriculture and land-use) and pub-
lished in the last ten years (cf. Section 2 below) have started to close
this research gap.We contribute to this burgeoning field by hindcasting
and evaluating Res-IRF, an integrated energy-economy model of the
French residential sector (Giraudet et al., 2012).4 As this task was
confronted to the above-mentioned lack of past data to initiate the
model (the repartition of the dwelling stock by energy efficiency
class), we had to reconstruct historical data in a preliminary step.

Reducing energy consumption and CO2 emissions in this sector is es-
sential to tackle climate change since the share of the residential sector
in globalfinal energy consumption amounts to 22%5 in 2013 and “global
building energy consumption could increase by 50% to 2050without as-
sertive energy efficiency action” (IEA, 2016). The Res-IRF model is
meant to incorporate the main relevant policies (taxes, subsidies and
regulations) and themain drivers of energy consumption in this sector:
construction, destruction and thermal renovation flows, fuel switch and
occupants' behaviour (e.g. thermostat setting).

We find that the model qualitatively replicates the main observed
trends but quantitatively under-estimates some of them. This is true
in particular for energy consumption per m2 (except for dwelling oil-
heated) and for the switch from fuel-oil to natural gas.

We then perform a sensitivity analysis on 8 parameters and select
two simulations out of 1920, based on their closeness to observations.
We discuss possible explanations for remaining discrepancies and
whether they would affect long-term projections in any relevant way.
Some causes are unlikely to appear in the future while others could,
and those should be focused on in future research.

The rest of the article is structured as follows. Section 2 reviews re-
lated hindcasting exercises conducted in the building sector. Section 3
presents themodel, the observational data and themetricswe use to as-
sess the model performance. Results are presented in Section 4,
Section 5 provides a broader discussion and Section 6 concludes.

2. Literature review

To our knowledge, only three hindcasting exercises analysing en-
ergy consumption in the buildings or residential sector have been pub-
lished: Chaturvedi et al. (2013), Fujimori et al. (2016) and van Ruijven
et al. (2010).

Chaturvedi et al. (2013) evaluate the global integrated assessment
model GCAM, and focus on its buildings component in the USA, one of
its 32 regions. The authors calibrate the model for 1990 and compare
simulation results to historical estimates for 1995, 2000, 2005 and
2010. They compare in particular the evolution of residential and com-
mercial floorspace, as well as the energy demand disaggregated by fuel,
US state and energy service. The model accurately replicates the ob-
served increase in residential floor space. It also accurately replicates
the observed decrease in residential heating final energy per m2

(which is also a central output variable in our model), though at a
slower than observed rate. This is true for the three modelled heating
fuels (gas, fuel-oil and electricity). As we shall see, our findings are
very similar, a pattern we try to explain in Section 5.

Another point made by the authors is “that the creation of a histori-
cal evaluation dataset is oneof the foremost challenges in the evaluation
process.” As explained above, we faced the same challenge, and thus
agree that it certainly contributes to explaining the above-mentioned
scarcity of retrospective studies in economics.

Fujimori et al. (2016) analyse the computable general equilibrium
(CGE) model AIM. They compare the simulated and observed energy
consumption, at the world and regional levels, from 1981 to 2010. For
Europe, as shown is the online Supporting Information to their article,
the simulated building energy demand is close to observations for all
fuels taken together and for electricity taken in isolation, but less so
for gas and solid fuels.Moreover the simulations do not replicate the ob-
served downward trend in liquid fuels.

Van Ruijven et al. (2010) quantify uncertainty in the calibration of
TIMER 2.0, a system dynamics model that simulates developments in
global energy supply and demand. The authors focus on the effect of res-
idential energy use at the regional scale for the period 1970–2003. For
Western Europe, the model replicates the stability of residential fuel
consumption for the period considered, but fuel consumption is not dis-
aggregated across energies. It also replicates the observed growth in res-
idential electricity consumption but not the slowdown observed in the
second half of the period.

Some hindcasting exercises have also been conducted for energy-
economy models which do not focus on the building sector.

Guivarch et al. (2009) use the oil price spike of 2008 to assess the
Imaclim-R recursive CGE model. They compare the simulated and ob-
served evolution of macroeconomic variables for a major oil importer
(India). The model is found to overestimate the recessionary impact of
the oil shock. The authors identify three mechanisms originally not in-
cluded in their model, the inclusion of which reduces the gap between
simulated and observed outputs. These three mechanisms are an in-
crease in capital inflows, subsidies to domestic oil consumers and the
rise of India as an exporter of refined products. The authors consider
that these mechanisms are “bound to remain short-term” so “it appears
acceptable not to embark these mechanisms in [their] modeling archi-
tecture when analysing long-term and global evolutions.” We discuss
this point further in Section 5 below.

Beckmanet al. (2011) analyse theCGEmodelGTAP-E. By comparing the
variance ofmodel-generated petroleum price distributions – driven by his-
torical demand and supply shocks to the model –with observed price dis-
tributions, they conclude that energy demand in GTAP-E is far too price-
elastic. After incorporating the latest econometric estimates of energy de-
mand and supply elasticities, they find the model to perform better.

Van Ruijven et al. (2009) apply the same analysis as Van Ruijven
et al. (2010) but with a focus on transportation. They conclude that dif-
ferent model calibrations based on the same data lead to contrasted fu-
ture projections, with a range in outcomes about 44–79% around the
best-fit option.

In closing,webrieflymention somehindcasting exercises performedon
economic models with no particular focus on energy. A first set of studies
assessing the ability of CGE models to replicate the impact of trade agree-
ments has produced contrasted conclusions (Kehoe et al., 1995; Kehoe,
2005). A second set of papers focus on agriculture and land-use (Baldos
and Hertel, 2013; Calvin et al., 2017; Lotze-Campen et al., 2008;
Ronneberger et al., 2008; Souty et al., 2013; Snyder et al., 2017;
Valenzuela et al., 2007). On this topic, the Agricultural Model Intercompar-
isonand ImprovementProject (AgMIP;Rosenzweiget al., 2013)has thepo-
tential to facilitate thedevelopment of hindcasting exercises bymutualising
methods, tools and datasets, like CMIP for global climate models.

Compared to the above-mentioned existing hindcasting studies, ours is
more focused since it only deals with energy consumption from heating,
and with one country (France). This allows us to compare model output

4 This exercise is part of a broader research programme, initiated with a global sensitiv-
ity analysis of Res-IRF (Branger et al., 2015), which consists in evaluating the “quality”, or
“fitness-for-purpose,” of the model (Oreskes, 1998).

5 Calculation based on IEA (2016).
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with observations, not only for energy consumption split by fuel, as most
studies do, but also for the building stock split by energy performance
category, main heating fuel, structural character and occupancy status,
and also for the number of retrofits. As we shall see, this is useful to better
understand the discrepancies between observations and simulations.

3. Material and methods

3.1. The Res-IRF6 model

Res-IRF, described in Fig. 1, is an integrated energy-economy model
of energy use for heating in French dwellings developed at CIRED. Ver-
sion 1 of the model is presented in Giraudet et al. (2011, 2012); version
2 is in Branger et al. (2015); the version used here, indexed 3.1., is based
on the version 3 detailed in Giraudet et al. (2018), the main difference
being that it is calibrated on an earlier year. It simulates the construction
and destruction of new dwellings, thermal retrofitting of existing ones,
the choice of the energy source in new dwellings, fuel switch in existing
dwellings,7 and heating intensity (e.g. thermostat setting). The latter
depends positively on household's income and dwelling energy effi-
ciency, and negatively on the energy price. This implies that an energy
tax will reduce heating intensity while a subsidy to energy efficiency
will increase it (rebound effect).

Res-IRF is run at an annual time step and has a finer resolution (840
categories of dwellings) than that of those peer models that have also
been subjected to hindcasting. In particular, Res-IRF distinguishes dwell-
ings along five dimensions: tenancy status (owner-occupied, rented –
private homeowner, rented – public homeowner), structural character
(single-family vs. multi-family building), main energy source (fuel-oil,
natural gas, electricity and fuelwood8), household's income, and energy
efficiency summarised by the energy performance certificate (EPC)
class, fromA toG, cf. Table 1. This facilitates the comparisonof simulations
and observations and the interpretation of observed discrepancies.

The model considers implicit technologies, i.e., it is not detailed if
windows are double-glazed and walls have external insulation, but
each change from a given energy performance class to a better one
(entailed by thermal retrofitting) is associated to an investment costs
in €/m2. The cost transition matrix is presented in Giraudet et al.
(2018). The share of dwellings being retrofitted and the ambition of
this retrofitting (the EPC class reached) are represented by logit func-
tions, which take into account the discounted cost of the available op-
tions, including the investment and energy cost (net of the various
taxes and subsidies) and an intangible cost representing all the non-
financial drivers of the investment (aesthetic or acoustic benefit, incon-
venience due to the work…) that cannot be estimated. The intangible
cost is calibrated so that the model reproduces a given retrofitting rate
at the initial year (Giraudet et al., 2018).

The main time-varying exogenous inputs are energy prices, the
number of households, households' income, and policies – thermal reg-
ulations, energy taxes and energy-efficiency subsidies (Table 2). In pre-
vious applications (forward-looking studies), Res-IRF model has been
calibrated against year 2012 (using in particular the Phébus survey9)

and run recursively in annual time steps to 2050 (Giraudet et al.,
2018). For the calibration year, additional inputs are required, especially
the state of the building stock, the costs of construction, of retrofitting
and of fuel switch.

The different drivers of energy demand are determined endoge-
nously (number of dwellings retrofitted, amount of energy saved thanks
to these retrofits and occupants' behaviour), and several barriers to en-
ergy efficiency improvements are included (heterogeneity of consumer
preferences, landlord-tenant dilemma, inertia of information diffusion,
rebound effect). Positive externalities are also taken into account in
the form of learning-by-doing (investment costs are reduced when
the cumulated investments increase). Calibrated intangible costs
mimic the imperfection of information and hidden costs that cannot
be modelled explicitly.

3.2. Calibrating Res-IRF on the 1984–2012 period

In this work, the model was calibrated against 1984, a year chosen
for data availability. Simulations were run until 2012 and outputs
were compared to available observations over this period. Contrary to
previous applications of Res-IRF, some demographic variables (number
of households and share of multi-family vs. single-family buildings)
were set exogenously, based on observations (Table 2). The reason is
that Res-IRF is first and foremost an energy-economy model and is not
aimed at forecasting demographic variables. Thus demographic vari-
ables are exogenous in this article, just like energy prices or public
policies.10

The most demanding task was the assessment of the energy effi-
ciency of the dwelling stock at the initial year (1984). The construction
of this dataset followed several stepswhich are explained inmore depth
in the Appendix:

• The 1984 “National housing survey” (INSEE, Enquête nationale
logement) provided the number of dwellings along four dimensions:
single vs. multi-family building, tenancy status, heating fuel and in-
come quintile.

• CEREN provided actual final energy consumption per m2 split by
heating energy source and structural character (single vs. multi-
family building).

• The “conventional energy consumption,” i.e., the consumption for a
standard utilisation of the heating system, was estimated based on
the actual one, through the heating intensity function mentioned
above. The consumption level obtained defines the belonging to a cer-
tain EPC class.

• Obtaining a 4-dimensional stock {decision maker, energy, income,
EPC} from 1984with 13.8million dwellings as a result of the exploita-
tion of the National housing survey, against 17 million dwellings for
CEREN. This difference is due to the deletion in our analysis of some
ambiguous data from the housing survey on the nature of the occu-
pant (owner or tenant) and the main heating energy.

• Weighting by energy and type of housing in the stock of 13.8 million
to obtain a stock of 17 million by proportionality, in order to be able
to compare the stock evolution with CEREN data.

• Transition from occupant income to landlord income (needed for in-
vestment decisions in Res-IRF). We finally obtain a dataset of the
1984 dwelling stock with 17 million units arranged by decision
maker, structural character, energy, income and EPC.

Some exogenous variables were readily available: number of dwell-
ings (split by heating energy source, income quintile & tenancy status),

6 Res-IRF stands for the “Residential module of IMACLIM-R France”. Res-IRF can indeed
be linked to IMACLIM-R France, a CGE model developed at CIRED (Mathy et al., 2015). In
this work, Res-IRF is run on its own.

7 In the model, fuel switch can only occur when the dwelling is retrofitted. We come
back to this point in section 5.

8 We do not present results for dwellings heatedmostly by fuelwood because themain
part of fuelwood is used in dwellings using also another heating fuel, and determining the
main energy source in these dwellings is problematic. This makes the comparison be-
tween model outputs and observations difficult. This problem does not significantly im-
pact aggregate results since only half a million dwellings used wood as the main heating
source in 2012 (CEREN, 2015).

9 Enquête Performance de l'Habitat, Équipements, Besoins et Usages de l'énergie
(Phébus). Ministère de la transition écologique et solidaire. http://www.statistiques.
developpement-durable.gouv.fr/sources-methodes/enquete-nomenclature/1541/0/
enquete-performance-lhabitat-equipements-besoins-usages.html

10 Previously, the number of households had been calculated in the prospective version
of themodel only because the French statistical institute did not provide a scenario featur-
ing its evolution up to 2050 until very recently (INSEE, 2018).
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share of multi-family vs. single-family buildings, share of owner-
occupied vs. rented dwelling, households' income and energy prices.
Table 2 provides the main data sources.

The least-knownpart concerned public policies (thermal regulations
and subsidies) and especially the energy efficiency of the dwelling stock
at the initial year (1984).

Thermal regulations for new residential buildings have been imple-
mented since 1974 in France, and strengthened several times, with new
regulations successively implemented for residential buildings in 1982,
1988, 2000, 2005 and 2012. Only the latter two specify explicit energy
consumption limits. For the others, there is no direct correspondence
between the requirements of the regulations and the EPC class. Besides,
these regulations have been loosely enforced, at least up to the 1990s
(Martin et al., 1998). The lack of ambition (or of enforcement) of these
regulations is confirmed by the fact that in 2012, according to the
above-mentioned Phébus survey, more than one million dwellings
were classified asG, theworst EPC class. Based on these data and discus-
sionwith experts, we consider that dwellings built until 2004 are not in-
fluenced by thermal regulations while from 2005 onwards all new
dwellings reach at least class E of EPC.

Reduced VAT has been in existence since 1999, income tax credit for
sustainable development (CIDD) since 2005, Energy-Efficiency Certifi-
cates since 2006 and the zero-rate loan since 2009. These three policies
are represented in themodel as subsidies which reduce the investment
cost of retrofitting.

3.3. Metrics to assess the model performance

In a first step, we present the results for the model calibrated with-
out the post-1984 data11 – thereafter referred to as the preliminary

simulation. As highlighted by Calvin et al. (2017) among others, this is
necessary to evaluate the performance of the model for prospective
studies. Otherwise themodel performancewould be artificially boosted,
compared to a situation where the model is actually used for forward
projections.

To this end we then apply two widely-used (Bennett et al., 2013)
evaluation metrics: the Mean Absolute Percentage Error (MAPE) and
the coefficient of determination (R2).

MAPE ¼ 1
n

� �
�
Xn
i¼1

Xobs;i−Xmodel;i

�� ��
Xobs;i

TheMAPE is a frequently-usedmetric for hindcasting exercises (e.g.
Calvin et al., 2017; Snyder et al., 2017) and represents the gap in per-
centage between simulations and observations, averaged over the
period.12

A limitation of the MAPE and similar indicators is that a low value
may be due to the fact that observed variables vary little. In this case,
a lowMAPE only indicates that themodel does not suffer froma system-
atic bias. Hence we also compute the coefficient of determination (R2),
following Lotze-Campen et al. (2008). R2 elicits the share of the variance
in the observed variable that is explained by the simulated one:

R2 ¼
Pn

i¼1 Xobs;i−Xobs
� � � Xmodel;i−Xmodel

� �� �
2Pn

i¼1 Xobs;i−Xobs
� �2 �Pn

i¼1 Xmodel;i−Xmodel
� �2

with Xobs and Xmodel respectively the averages of observations and sim-
ulations and n the number of observations.

11 Two caveats are in order. First, since res-IRF is a partial equilibriummodel, some yearly
variables are necessarily exogenous, in particular energy prices and household income.
Second, as explained above, the number of households and the share of multi-family vs.
single-family buildings, which are endogenous when the model is run forward in time,
are forced exogenously in this hindsight exercise so that the performance of the model
with respect to more central outputs can be assessed.

12 We prefer it to the RMSE (Root Mean Square Error), another frequently-used metric
which is however known for putting too much weight on large errors (Bennett et al.,
2013). Unlike the RMSE, theMAPE produces a non-smooth operator (it has a kink at zero)
which is problematic in some optimisation contexts and explains why the RMSE is often
preferred. This problem does not appear in our optimisation. Anyway, Snyder et al.
(2017) show in a similar context that results are very close for the mean average error
and for the RMSE.

Inputs, ini�al year:
• Nb of dwellings, by 

category*
• Ini�al retrofi�ng rate, 

by EPC
• Investment cost for 

new dwellings, by 
category*

• Investment cost for 
exis�ng dwellings 
(retrofi�ng & fuel 
switch), by category*

• Hea�ng intensity 
func�on parameters

• Heterogeneity 
parameters:
• New dwellings EPC
• Fuel switch
• Retrofi�ng

• Life�me for 
retrofi�ng and fuel 
switch investments

Yearly inputs:
• Energy prices
• Policies
• Energy tax
• Subsidy rates
• Thermal 

regula�ons for new 
dwellings

• Households’ income
• Nb of single- & 

mul�family dwellings 
built & destroyed

Res-IRF

Updated building 
stock (Nb of 
dwellings by 
category*)

Res-IRF

Main outputs:
• Energy consump�on 

by dwelling category* 
• Nb of retrofits, by 

category *

Yearly inputs:
•

•

•

•

•

•

First year Second year

Updated building 
stock (Nb of 
dwellings by 
category*)

Main outputs:
•

•

Time

Fig. 1. Simplified representation of the Res-IRF model. Source: authors. The inputs underlined are those subject to the sensitivity analysis.
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3.4. Sensitivity analysis

It is well-known that uncertainties in energy modeling leave room
for different calibrations of a model. Van Ruijven et al. (2009) carefully
discuss this issue using the TIMER global energymodel applied to trans-
portation, and “obtain sets of parameter values that perform reasonably
against historic data”, which is also the aim of this sensitivity analysis.

Therefore, in a second step, we perform a sensitivity analysis on
those parameters that could not be precisely determined (Table 3). All
combinations are considered, which means that 1920 (2∗2∗2∗3∗2∗5∗4
∗2) simulations are run. The range of parameters considered results
from a compromise between the calculation time (which increases ex-
ponentially with the number of parameter values considered) and an
attempt to vary the parameters most likely to influence the results
significantly.

Among the 1920 simulations, we single out two of them, in addition
to the “preliminary simulation”, which is based on the parameters se-
lected before performing the sensitivity analysis.

• The “uni-dimensional optimum” simulation minimizes the MAPE ap-
plied to the actual final energy consumption per m2, aggregated over
all dwelling types, and over the period 1985–2012. We choose this
variable because it is the most policy-relevant among our model out-
put variables. Yet such an aggregated quantity may hide significant
discrepancies which partially cancel out each other. Thus we also sin-
gle out another simulation:

• The “multi-dimensional optimum” simulation is also selected using
the MAPE over the period 1985–2012, but following a more complex
procedure. First, we select the simulations which outperform the pre-
liminary one on twelve dimensions: energy consumption per m2 for
our six dwelling categories, and number of dwellings for the same
six categories. This leaves us with seven simulations. Then among
these simulations we select the parameters value which show up
themost often. This leaves uswith three simulationswhich only differ
by the initial rate of retrofitting: 2.5%, 2.8% or 3%/yr. We finally select
the latter for two reasons: it provides a slightly lower MAPE than the
other two for aggregated energy consumption, and since the prelimi-
nary simulation also features a 3%/yr. retrofitting rate, we conclude
that there is no reason to change this value.

Most parameters values are presented in Table 3 for the preliminary
and the two “optimum” simulations. The methods as well as the values
for the other parameters are explained in Glotin (2018, section 3.5).

In the “uni-dimensional” simulation, compared to the preliminary
one, the following parameters are changed. Investment costs for new
dwellings become more expensive; the heterogeneity parameter for
new dwellings becomes higher, i.e. the EPC for new dwellings becomes
more price-sensitive; heterogeneity parameters for both fuel switch
and retrofitting become lower, i.e., the choice of an EPC and of a fuel be-
comes less price-sensitive; the retrofitting rate at the initial year (1984)
becomes slightly higher; the repartition of retrofitting by EPC includes
less inefficient dwellings (EPC F & G) and more relatively efficient
dwellings (EPC D & E); finally, to calculate the impact of retrofitting

and fuel switch investments on energy consumption, shorter lifetimes
are assumed, in other words investors do not take into account the in-
creased value of the dwelling when they stop occupying them
(i.e., after 7 years for owner-occupied dwellings and after 1 year for
dwellings rented by a private homeowner).

Concerning the “multi-dimensional” optimum, parameters take the
same value as in the preliminary simulation, or the same value as in
the “uni-dimensional optimum”. Thus, fitting the model on several di-
mensions would lead us to change fewer values than fitting it just on
a single dimension.

4. Results

4.1. Energy consumption per m2

Table 4, Fig. 2 and Fig. 3 present the actual final energy consumption
perm2, the variable used to select the “uni-dimensional optimum” sim-
ulation and one of those used to select the “multi-dimensional opti-
mum” simulation. Results at the aggregated level are already
satisfactory for the preliminary simulation since theMeanAbsolute Per-
centage Error (MAPE) is lower than 1.5% and themodel explains 85% of
the variance (Table 4). Graphically, the decreasing trend is consistent
with observations (Fig. 2). This trend may be explained by an increase
in energy prices and the implementation of energy efficiency policies
after 2000.

However, observed consumption decreases from around 150 kWh/
m2 in 1990 to around 100 in 2012 while in the preliminary simulation
it starts from the same level but reaches around 120 kWh/m2 in 2012.
Results are much closer to observations with the uni-dimensional opti-
mum simulation, which can be seen in Fig. 2 (lower curve) and by our
model performance metrics: MAPE is divided by three, as well as the
part of the variance not explained by the model (R2 moves from 85%
to 96%). Themulti-dimensional simulation is roughly half-way between
the preliminary and the uni-dimensional optimum simulation, both
graphically (Fig. 2) and by looking at the MAPE (Table 4).

However disaggregated results aremore contrasted (Fig. 3). For each
of the six dwelling categories, energy consumption decreases faster in
the two “optimum” simulations than in the preliminary one. In most
cases, the two “optimum” simulations are close one to the other and
closer to observations than the preliminary one.

Table 2
Main data sources.

Data used as inputs to the model

Variables Year(s) Source

Number of dwellings, split by heating
energy source, income quintile &
tenancy status

1984 National housing survey
(Enquête nationale
logement)

Energy prices 1984–2012 Pégase databasea

Households' income 1984–2012 INSEE
Number of dwellings & share of
single-family vs. multi-family

1984–2012 National housing survey
(Enquête nationale
logement)

Subsidy rates: reduced VAT, income tax
credit for sustainable development
(CIDD), Energy-Efficiency Certificates
& zero-rate loan (éco-PTZ)

1984–2012 Various sources

Investment cost for new dwellings 1984–2012 INSEE, Cost of
construction index

Data compared to model outputs

Variables Year(s) Source

Repartition of dwellings by Energy Performance
Certificate

2012 Phébus
survey

Final energy consumption 1984–2012 CEREN
Number of dwellings, by energy source 1984–2012 CEREN

a http://www.statistiques.developpement-durable.gouv.fr/donnees-ligne/r/pegase.html

Table 1
Energy consumption by Energy Performance Certificate class.

EPC class Energy consumption for heating (kWh/m2/yr.)

G 507
F 321
E 216
D 141
C 90
B 59
A 45

Conventional consumption, in primary energy. Source: authors' calculations, based on the
Phébus survey.
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However oil-heated dwellings are an exception on this point: the
MAPE is worse for the Uni-dimensional optimum than for the Prelimi-
nary simulation, although the R2 is slightly better. For the Multi-
dimensional optimum simulation, both metrics are almost equal to
those in the Preliminary simulation.

Moreover, all simulations largely underestimate electricity con-
sumption in multi-family buildings, especially at the end of the period;
this bias is reflected in the high value of the MAPE for the category, in
both the preliminary and the “optimum” simulations.

4.2. Stock evolution per type of dwelling and heating energy source

For each dwelling category, the model simulates the choice of the
energy source, both for new and retrofitted buildings. Throughout the
period, there has been a massive increase in the number of dwellings
heated by natural gas and electricity and a drop in fuel-oil heating, espe-
cially inmulti-family buildings. Fig. 4 shows that themodel qualitatively
replicates the observed trends. Quantitatively, it accurately replicates
the rise in electric heating. For other fuels, simulations are accurate in
trend but not in magnitude; specifically, the increase in natural gas
and the decrease in fuel oil are largely underestimated, in every simula-
tion. The two “optimum” simulations are close one to the other, the
“multi-dimensional optimum being slightly closer to observations for
single-family buildings heated by electricity and fuel-oil.

4.3. Energy performance of the dwelling stock

The only available data against which to compare our simulations
come from the Phébus survey and concern a single year, 2012. However,
the work realised to build the dwelling stock of 1984 generates insights

into how the energy performance of dwellings has evolved between
these two dates.

The left panel of Fig. 5 represents the dwelling stock split by EPC of
1984, from the reconstitution explained in Section 3. As we can see,
there is almost no dwelling with an EPC A, B or C and only 7% of dwell-
ings belong to class D.

On the right panel, observations from the Phébus survey are com-
pared to simulations for the final year, 2012. In observations as well as
in simulations, the dwelling stock is much more efficient in 2012 than
in 1984, with especially a sharp decrease in class G dwellings. Simula-
tions are also consistent with observations in that there is almost no
dwelling belonging to classes A and B.

However, the simulated dwelling stock ismore efficient than the ob-
served one, with too many dwellings in class C and too little in class G.
Moreover, for EPC classes C and G, the discrepancy is larger with the
two “optimum” than with the preliminary simulation. In the” uni-di-
mensional optimum” simulation, themodel parameters are set at values
that permit particularly deep retrofits, thereby getting specific energy
consumption closer to observations; this however comes at the expense
of increasing the gap between the observed and simulated dwelling
stock, in particular for the C and G EPC classes. The “multi-dimensional”
optimumperformsbetter in this regard and is very close to observations
for classes C, D and F. Yet it shows important discrepancies for classes E
and G.

4.4. Number of retrofitted dwellings

Unfortunately we cannot compare the simulated number of
retrofitted dwelling to observations for every year, nor for every dwell-
ing category. The reason is that while estimations of the number of
dwellings retrofitted have existed for several decades (Nauleau, 2014),

Table 3
Summary of the sensitivity analysis.

Parameter Number
of
values

Value for the preliminary
simulation

Value for the uni-dimensional
optimum simulationb

Value for the multi-dimensional
optimum simulation

Investment cost for new dwellings 2 2012 value, inflation-adjusteda More expensivea More expensivea

Investment cost for existing dwellings (retrofitting & fuel
switch)

2 Decreasing through timea Decreasing through timea Decreasing through timea

Heterogeneity parameter for new dwellings 2 8 15 (more price-sensitive) 15 (more price-sensitive)
Heterogeneity parameter for fuel switch 3 8 2 (less price-sensitive) 2 (less price-sensitive)
Heterogeneity parameter for retrofitting 2 8 2 (less price-sensitive) 8
Retrofitting rate at the initial year 5 3% 3.5% 3%
Repartition of retrofitting by EPC 4 G: 40%; F: 35%; E: 20%; D: 5%;

C,B,A: 0%
G:35%; F: 30%; E: 25%; D: 10%;
C,B,A: 0%

G: 40%; F: 35%; E: 20%; D: 5%;
C,B,A: 0%

lifetimes for retrofitting and fuel switch investments 2 With green values Without green value Without green value

Source: authors.
a Cf. Glotin (2018, section 3.5).
b The simulationwhichminimizes the R2 features the same parameters values except that it includes green value and a heterogeneity parameter for fuel switch equal to 15. The output

variables are very close so they are not presented.

Table 4
Model performance metrics for the energy consumption per m2.

Mean Absolute Percentage Error (MAPE) R2

Preliminary
simulation

Uni-dimensional
optimum
simulation

Multi-dimensional
optimum
simulation

Preliminary
simulation

Uni-dimensional
optimum
simulation

Multi-dimensional
optimum
simulation

Aggregated 1.4% 0.5% 0.9% 85% 96% 93%
multi-family electricity 34.7% 27.3% 28.9% 21% 95% 92%
multi-family fuel-oil 2.7% 3.0% 2.6% 56% 60% 55%
multi-family natural gas 6.4% 3.2% 4.4% 17% 60% 40%
single-family electricity 9.6% 3.7% 5.4% 92% 86% 91%
single-family fuel-oil 2.7% 6.7% 2.7% 70% 84% 71%
single-family natural
gas 7.9% 2.0% 4.1% 53% 96% 87%

Source: authors.
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until 2018 these surveys did not estimate the energy savings entailed by
these retrofits. The newly released survey TREMI (Ademe, 2018) pro-
vide such data but only for single-family dwellings and only aggregated
over the three years 2014–2016. Hence, we focus on single-family
dwellings and on year 2012, the closest to the period covered by
TREMI (Table 5).

The number of retrofitted dwellings is about one third too low in the
Preliminary simulation, compared to observations, the discrepancy
being even higher in the “uni-dimensional optimum” simulation.
Among these retrofitted dwellings, those gaining 2 or more EPC classes
are more numerous in the model simulations than in the observations.
Finally, the dominance of owner-occupied dwellings in retrofitted
dwellings (90%, while these dwellings represent 79% of single-family
dwellings), is well represented. Finally, the “Multi-dimensional opti-
mum” is closer to observations than the other two simulations, on
every dimension presented in Table 5.

These being said, these comparisons cannot be taken at face value, be-
cause they concern different years, and because the gain in EPC classes in
TREMI is the result of a calculation based on a simplified building thermal
model (3CL), which is itself imperfect and fed by rather imprecise data.

5. Discussion

Our hindcasting exercise indicates that the Res-IRF model is able to
qualitatively replicate the main trends over the 1984–2012 period: the
decrease in the number of dwellings heated by fuel-oil and the corre-
sponding increase in the share of electricity and natural gas, the im-
provement in the building stock efficiency and the corresponding
decrease in energy consumption perm2 for each of the six dwelling cat-
egories (single-family and multi-family, heated by electricity, gas and
fuel-oil). Moreover the simulated share of owner-occupied dwellings
in retrofitted single-family dwellings is close to observations (Table 5).
In the remainder of this section, we discuss what we think are the
main significant discrepancies.

5.1. Main discrepancies regarding aggregate energy consumption

In the preliminary simulation, the decrease in energy consumption
perm2 is lower than in observations.We can think of four explanations:

i. The number of retrofitted dwellings simulated could be too low.
Two arguments point in this direction: in the “uni-dimensional op-
timum” simulation, the initial number of yearly retrofits (which is
used to calibrate intangible costs – cf. Section 3 above) is higher
than in the preliminary simulation (Table 3), and the decrease in en-
ergy consumption per m2 is much closer to observations (Fig. 2).
Moreover the number of simulated retrofits in 2012 is lower than
theoneobserved over 2014–2016 in average13 (Table 5). A likely ex-
planation for the too low number of retrofitted dwellings is that in
the model, dwellings built after 1984 cannot be retrofitted, while
in reality some of them have certainly been.14

ii. Modelled retrofits could be less ambitious than in reality. Available
observations do not point in this direction: first, the number of am-
bitious retrofits (at least two EPC classes gained) is higher than in
observations (Table 5); second, the 2012 dwelling stock is too effi-
cient compared to observations (Fig. 5). Hence we think that we
can rule out this explanation.

iii. The relatively coarse definition of the EPC classes may lead one
to ignore some energy efficiency gains that do not generate a

Fig. 2.Actualfinal energy consumption for heating (kWh/m2) aggregated over all dwelling
categories. Observations are weather-corrected (CEREN, 2015).

Fig. 3. Actual final energy consumption for heating (kWh/m2), by dwelling category.
Observations are weather-corrected (CEREN, 2015).

Fig. 4. Evolution of the stock per type of dwelling and heating energy source.

13 Surprisingly, this number is even lower in the “uni-dimensional optimum” simula-
tion; our interpretation is that in this simulation,more dwellings are retrofitted in thefirst
years, so fewer opportunities for economically interesting retrofits are available at the end
of the period.
14 The TREMI survey indicates that 4% of the single-family dwellings retrofitted over
2014–2016 had been built after 2000 and 19% over 1975–2001 (Ademe, 2018). Unfortu-
nately more precise data are not available.
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change in EPC class. In particular, the EPC class G has no upper
bound for energy consumption. Hence the 31% dwellings fall-
ing in class G in 1984 may have benefited from significant en-
ergy retrofits without moving to a more efficient class. Also,
while some dwellings built after 1984 undoubtedly fall in
class G, they are certainly more efficient than the average
class-G dwelling, built before the first thermal regulation in
1974.
iv. The heating intensity could increase too much throughout

the period, perhaps because of a too high rebound effect.
The rebound effect in Res-IRF is around 30%, a figure compat-
ible with empirical estimates (Giraudet et al., 2018), but the
latter typically yield large confidence intervals so we cannot
rule out this explanation.

5.2. Main discrepancies by heating energy sources

The model vastly underestimates the switch from fuel-oil to natural
gas in multi-family buildings (Fig. 4). We can think of two explanations.

i. One owes to the structure of the model, which allows fuel-
switch only for dwellings which move to a better energy effi-
ciency class, while in reality some dwelling have switched
from fuel-oil to gas without improvement in the building en-
velope, and often without moving to a better energy class
(even though new gas boilers generally had a better energy ef-
ficiency than the fuel boilers they replaced).

ii. Another explanation is that the switch was in practice enabled
by the expansion of the natural gas network during the period
simulated, especially in cities, where multi-family buildings are

concentrated. Absent geo-localised data of natural gas network
and fuel-switch, we cannot quantify this effect.

The other main discrepancy concerns multi-family dwellings:
those heated by fuel-oil and natural gas suffer from a relatively
low R2 (60% for the “uni-dimensional optimum” simulation)
while those heated by electricity suffer from a relatively high
MAPE (27% for the “uni-dimensional optimum” simulation)
while observations indicate a much lower consumption than sim-
ulations, especially at the end of the simulation period (Fig. 3).

The latter discrepancy is particularly surprising and could be due to
problems in observational data, since average energy consumption
lower than 50 kWh of final energy per m2 is surprisingly low even for
dwellings heated by electricity, which are known to consume less than
other dwellings, partly because energy is more expansive, partly because
thermal regulations are more stringent. While CEREN energy consump-
tion data are generally considered reliable when they are aggregated
across all uses for a given energy carrier, this is less clear when they are
disaggregated, which is more difficult for electricity because of the nu-
merous uses of this energy carrier. According to some energy measure-
ment campaigns, CEREN vastly over-estimates the amount of electricity
in some specific uses, such as washing (around 15 TWh in 2016 in
France, vs. 6 according to Binet and Cayla, 2018). This is consistent with
an underestimation of electricity consumption from heating.

Finally, as mentioned above, our simulations do not reproduce ob-
served fluctuations in energy consumption of dwellings heated by fuel-
oil. These fluctuations follow a pattern which seems difficult to explain;
in particular it does not mirror fuel-oil price. Here again, this can be
due to the imperfection of observational data, all the more likely that

Fig. 5. Distribution of dwellings per Energy Performance Class (EPC).

Table 5
Thermal retrofitting of single-family dwellings: observations vs. simulations.

Observations
(average
2014–2016)

Res-IRF, preliminary
simulation (year
2012)

Res-IRF,
uni-dimensional
optimum (year 2012)

Res-IRF,
multi-dimensional
optimum (year 2012)

Number of retrofitted single-family dwellings 433 301 271 306
Of which energy efficiency gain = 1 EPC class 347 175 153 216
Of which energy efficiency gain ≥ 2 EPC classes 87 125 117 90
Share of owner-occupied dwellings in retrofitted single-family
dwellings

90% 86% 84% 92%

Source: authors' calculations, based on Ademe (2018) for observations.
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the sample of dwellings using fuel-oil for heating in CEREN data is
smaller than for gas and electricity.

5.3. Implications of the main discrepancies for the model assessment

These differences between observations and simulations raise ques-
tions, which, we think, are quite general: to what extent do the discrep-
ancies disqualify the use of the model for forward-looking studies? Do
they point to prioritise some particular model developments? The an-
swers clearly depend on the explanation for the observed discrepancies.

Take the first one, the too low decrease in energy consumption
per m2. As explained above, a likely explanation is that in the
model, dwellings built after 1984 cannot be retrofitted (explanation
i above). This is not problematic for forward-looking studies since
dwellings built after 2012 are much more energy-efficient than be-
fore thanks to a new thermal regulation, so they are unlikely to be
retrofitted in the next decades.15 Vice-versa, if the problem is a too
high rebound effect (explanation iv), it will still happen in the future
and deserves further attention. Finally, splitting class G in several
sub-classes (following explanation iii) would be less useful for
forward-looking studies since these dwellings represent a much
smaller share now than in 1984.

Concerning the insufficient switch from fuel-oil to gas, the first
explanation given above (fuel-switch only allowed for effective en-
ergy efficiency upgrades)may bias the results also for long-term pro-
jections, and could be addressed by changing the way fuel switch is
modelled. In contrast, the second explanation (expansion of the gas
network) is unlikely to bias long-term projections because the natu-
ral gas distribution network will not develop significantly in the fu-
ture, since it has reached almost every densely built area.16

To sum up, identifying discrepancies between model and obser-
vation does not systematically imply the model should be discarded
or even modified – provided that the cause is unlikely to materialise
again in the future. Guivarch et al. (2009) make a similar point when
they write that the mechanisms behind the discrepancies they iden-
tified are bound to remain short-term, so are of little relevance for
the long-term prospective studies their model is designed for.

Admittedly, we cannot rule out that important unexpected
drivers of residential energy consumption occur before 2050. For in-
stance, building retrofitting costs might decrease following mass-
production, or progress in heat-pump technologies could induce a
switch toward electricity. Moreover, both the market price of fossil
fuels and the future carbon prices are notoriously difficult to forecast,
while they impact both retrofitting and heating intensity. Hence, re-
sults from the prospective studies for the next decades based on Res-
IRF may well differ a lot from future observations. However this is
true for any prospective study, and what matters, in our opinion, is
the capacity of the model to factor in such surprises, especially in
order to understand to what extent they affect the cost and effective-
ness of public policies or targets.

5.4. Implications of the main discrepancies for modelers and data providers

Some of the identified discrepancies mirror those found in the
other hindcasting studies mentioned in Section 2 above. Chaturvedi
et al. (2013) also underestimate the observed decrease in residential
heating final energy per m2. Fujimori et al. (2016) do not replicate
the observed downward trend in liquid fuels consumption for
Europe. Finally, Van Ruijven et al. (2010) overestimate electricity
consumption, in the second half of the period they consider.

Unfortunately, simulations are generally presented by researchers at
a rather aggregate level which prevents one from further comparing
models outputs. This lack of disaggregated results in most published
hindcasting studies is sometimes due to the aggregated nature of the
model itself, sometimes to journal space constraints. Systematically
presenting energy consumption split by fuel and (when relevant)
dwelling type would facilitate model comparisons for future
hindcasting exercises; so would presenting energy consumption per
m2 in addition to aggregate consumption.

These evolutions could be facilitated by a model intercomparison pro-
ject devoted to energy consumption, in the spirit of CMIP in climate science
or AgMIP in the agriculture-land use scientific community. The Energy
Modeling Forum could form a natural forum for this kind of retrospective
studies since it already has this role for prospective studies (e.g.
Huntington, 2011, in the field of energy efficiency).

However we think that the main hurdle to hindcasting exercises in
energy economics is the limited availability of observational data. In
France, yearly residential energy consumption data are available to re-
searchers only in an aggregatedway, individual data beingprivate prop-
erty of CEREN. This prevents researchers fromdisentangling the effect of
problems in data from that of problems in the model. Similarly, data on
retrofitted dwellings are available only for single-family dwellings and
in an aggregated way, although the situation is likely to improve in
the near future thanks to new surveys launched by Ademe and to a
more open data policy.

6. Conclusion

Our hindcasting exercises indicate that the Res-IRF model is able
to replicate the main trends over the 1984–2012 period: the de-
crease in the number of dwelling heated by fuel-oil and the corre-
sponding increase in the share of electricity and natural gas, the
improvement in the building stock efficiency and the corresponding
decrease in energy consumption per m2 for each of the six dwelling
categories (single-family and multi-family buildings, heated by elec-
tricity, gas and fuel-oil). The metrics calculated for the decrease in
energy consumption per m2 indicate a good overall performance of
the model.

They also shed light on some limitations of the model, in particular too
slow evolutions in fuel switch and energy consumption per m2. This pro-
vides directions for improvements of the model in future work. To this
end, it is useful to identify the cause of discrepancies between observations
and simulations, because some of the possible causes are likely to persist in
the future (like thepossibility to switch fuelwithout improving thebuilding
envelope) while others are not (like the development of the natural gas
network).

Data availability makes such identification difficult, a point also
highlighted by Chaturvedi et al. (2013). Observations of energy con-
sumption which we compare to our model outputs are based on a
survey whose results are available to researchers only in aggregate.
This hinders identification of the reasons for the observed
discrepancies.

However we are convinced that these difficulties should not prevent
economists to engage into hindcasting. To quote Oreskes et al. [42] “In
areas where public policy and public safety are at stake, the burden is
on themodeller to demonstrate the degree of correspondence between
the model and the material world it seeks to represent and to delineate
the limits of that correspondence.”
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15 The thermal regulation for dwellings built after 2012 sets a maximum energy con-
sumption of 50 kWh/m2. In these dwellings, the heating energy bill is so low that the cost
of a thermal retrofitting would excess the possible gain in energy spending.
16 Almost every municipality over 10,000 inhabitants is connected to the gas network.
Connecting smaller municipalities generates disproportionate costs. https://www.
ecologique-solidaire.gouv.fr/infrastructures-et-logistique-gazieres#e3
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Appendix A. Construction of dwelling stock data in 1984
Year 1984 was chosen as the initial year because of data availability reasons. Indeed, two surveys of the French national statistics institute (INSEE)
were published: the National Housing Survey in 1984 [29] (“Enquête Nationale Logement”=ENL) and the Family Budget Survey in 1985 [30] (“Bud-
get des Familles”=BdF)were used to build the segmented image of the building stock. Data furnished by CEREN about actual consumption of dwell-
ings in 1984 differentiated by tenancy status and heating energy source were also used. The reconstruction of the building stock of 1984 followed
several steps.
National Housing Survey: segmentationwith 3 dimensions {tenancy status,
heating energy source, income quintile}
Filtering the number of dwellings in each segment is donewith R, by reading the dataset of theNational Housing Survey. The datasetwas provided by
“Réseau Quetelet”. A coefficient of extrapolation is defined for each of the 29,233 households surveyed. It enables one to switch to the real number of
dwellings.
The National Housing Survey does not provide any information about heating consumption.
Thus, the image of the dwelling stock of 1984 contains at this point three dimensions: tenancy status (6 types), heating energy (4 types) and income
quintile (5 types).
Reconstructing the fourth dimension: conventional consumption
The dwelling stock needs to be classified into EPC classes. Data on consumption of dwellings at real climate in 1984were collected from CEREN. After
converting them at normal climate, the following table was produced with average consumptions for three different periods of construction.
Table A.1
Average unit consumption per type of dwelling and energy source (1984).

Actual heating consumption of primary energy at normal climate b1975 kWhep/m2 1975–1981 kWhep/m2 1982–1987 kWhep/m2

Single-family, owner-occupied Electricity 250 Electricity 157 Electricity 156
Natural gas 173 Natural gas 141 Natural gas 132
Fuel oil 170 Fuel oil 127 Fuel oil 96

Single-family, rented Electricity 243 Electricity 153 Electricity 108
Natural gas 169 Natural gas 134 Natural gas 118
Fuel oil 170 Fuel oil 124 Fuel oil 81

Multi-family, owner-occupied Electricity 226 Electricity 150 Electricity 138
Natural gas 158 Natural gas 148 Natural gas 118
Fuel oil 194 Fuel oil 200 Fuel oil 196

Multi-family, rented Electricity 208 Electricity 151 Electricity 143
Natural gas 170 Natural gas 148 Natural gas 125
Fuel oil 189 Fuel oil 194 Fuel oil 169

Data fromCERENdonot provide information about incomes anddonot distinguish social and private rentals. Furthermore, Res-IRF requires EPC clas-
ses, which means that these actual consumptions have to be converted into conventional consumptions. Besides, dispersion is necessary, otherwise
all the dwellings POMI_electricity_Q1 will have the same consumption and will be in the same class, which is not realistic. The consumptions pre-
sented above are averages.
For that purpose, the heating intensity factor curve is used in order to convert the actual consumption into conventional consumption. The following
equation has to be solved, with Cconv the conventional consumption and Cr the actual consumption presented above:

Cr

Cconv
þ 0:191 � log pener �

Surface
Income

� �
� Cconv

� �
−0:1105 ¼ 0

As the actual consumption values from CEREN are averaged by tenancy status and energy source, the surface and income of each household enable to
obtain individualised conventional consumption values for each household. Even if the spread of values may be greater in reality, the precision of
CEREN data does not allow getting deeper. The consumption level obtained for each household defines its belonging to a certain EPC class.
Final adjustments: total number of dwellings and income of owners
The dwelling stock is now divided into the four desired dimensions: tenancy status, heating energy, income quintile and energy performance. How-
ever, the reconstructed building stock only reaches 13.8million of dwellings, compared to the 17,365,650 dwellings heatedwith one of the four fuels
at stake in year 1984 according to CEREN. This is due to the variables of the National Housing Survey that are sometimes ambiguous or not accurate
enough, so these dwellings were left behind. It is also due to the definition of the principal heating energy source of CEREN which is not necessarily
the same as in the National Housing Survey, especially when there are several heating energies in the same dwelling. In order to compare the results
of the simulations from 1984 to 2012 with some data, it is essential to start with the appropriate number of dwellings, at least the same as the avail-
able data (from CEREN then). The building stock with 13.8 million of dwellings is therefore extended to 17,365,650 dwellings by applying propor-
tionality coefficients for each branch {heating energy + single-family/multi-family dwelling}. This is equivalent to assuming that the shares of
each reconstructed segment {tenancy status + heating energy + income quintile + EPC} in the larger branch {heating energy + single-family/
multi-family} remain unchanged.
The incomeof owners coincideswith the incomeof tenants on the segment PO (homeowners). However, for the segment PB, tenants are not owners.
For the investment decisions, Res-IRF needs the income of landlords. The process used to switch from the income of tenants to the income of land-
lords on the segment PB is the same as the one used for prospective simulations (Giraudet et al., 2018), with adapted data when available. This pro-
cess leads to the final image of the dwelling stock, classified according to the incomes of owners.
The final dataset is provided in the supplementary material.

Appendix B. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2019.07.012.
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